1,987 research outputs found

    Measurements of PAN, alkyl nitrates, ozone, and hydrocarbons during spring in interior Alaska

    Get PDF
    Measurements of the atmospheric mixing ratios of ozone, peroxyacetylnitrate (PAN), hydrocarbons, and alkyl nitrates were made in a boreal forest ecosystem in the interior of Alaska from March 15 to May 14, 1993. During this period the mixing ratios of PAN, alkyl nitrates, and nonmethane hydrocarbons (NMHCs) generally decreased due to the influence of both meteorology and OH removal. Mean mixing ratios of ozone, PAN, C2 ‐ C6 alkyl nitrates, and total C2 ‐ C5 NMHC during southerly flow periods were 24.4 parts per billion (ppbv), 132.1 parts per trillion (pptv ), 34 pptv, and 8.2 ppbCv, respectively. During a short period of northerly flow, mixing ratios of PAN and total NMHC were approximately 2 times the southerly flow mixing ratios. PAN is correlated with ozone, and alkyl nitrates are correlated with alkanes. PAN and ozone mixing ratios exhibit similar diurnal variations on a number of days with an early morning minimum and afternoon maximum. This is likely due to a diurnal cycle in the boundary layer ‐ free troposphere exchange and loss processes in the boundary layer for both O3 and PAN. Higher molecular weight (mw) hydrocarbons and alkyl nitrates are observed to decrease more quickly than the lower mw hydrocarbons, consistent with removal by OH as the primary loss process

    Quantum Mechanics on Manifolds Embedded in Euclidean Space

    Get PDF
    Quantum particles confined to surfaces in higher dimensional spaces are acted upon by forces that exist only as a result of the surface geometry and the quantum mechanical nature of the system. The dynamics are particularly rich when confinement is implemented by forces that act normal to the surface. We review this confining potential formalism applied to the confinement of a particle to an arbitrary manifold embedded in a higher dimensional Euclidean space. We devote special attention to the geometrically induced gauge potential that appears in the effective Hamiltonian for motion on the surface. We emphasize that the gauge potential is only present when the space of states describing the degrees of freedom normal to the surface is degenerate. We also distinguish between the effects of the intrinsic and extrinsic geometry on the effective Hamiltonian and provide simple expressions for the induced scalar potential. We discuss examples including the case of a 3-dimensional manifold embedded in a 5-dimensional Euclidean space.Comment: 12 pages, LaTe

    Observations of ozone and related species in the northeast Pacific during the PHOBEA campaigns 2. Airborne observations

    Get PDF
    During late March and April of 1999 the University of Wyoming's King Air research aircraft measured atmospheric concentrations of NO, O3, peroxyacetyl nitrate (PAN), CO, CH4, VOCs, aerosols, and J(NO2) off the west coast of the United States. During 14 flights, measurements were made between 39°-48° N latitude, 125°-129° W longitude, and at altitudes from 0-8 km. These flights were part of the Photochemical Ozone Budget of the Eastern North Pacific Atmosphere (PHOBEA) experiment, which included both ground-based and airborne measurements. Flights were scheduled when meteorological conditions minimized the impact of local pollution sources. The resulting measurements were segregated by air mass source region as indicated by back isentropic trajectory analysis. The chemical composition of marine air masses whose 5-day back isentropic trajectories originated north of 40° N latitude or west of 180° W longitude (WNW) differed significantly from marine air masses whose 5-day back isentropic trajectories originated south of 40° N latitude and east of 180° W longitude (SW). Trajectory and chemical analyses indicated that the majority of all encountered air masses, both WNW and SW, likely originated from the northwestern Pacific and have characteristics of emissions from the East Asian continental region. However, air masses with WNW back trajectories contained higher mixing ratios of NO, NOx, O3, PAN, CO, CH4, various VOC pollution tracers, and aerosol number concentration, compared to those air masses with SW back trajectories. Calculations of air mass age using two separate methods, photochemical and back trajectory, are consistent with transport from the northwestern Pacific in 8-10 days for air masses with WNW back trajectories and 16-20 days for air masses with SW back trajectories. Correlations, trajectory analysis, and comparisons with measurements made in the northwestern Pacific during NASA's Pacific Exploritory Mission-West Phase B (PEM-West B) experiment in 1994 are used to investigate the data. These analyses provide evidence that anthropogenically influenced air masses from the northwestern Pacific affect the overall chemical composition of the northeastern Pacific troposphere. Copyright 2001 by the American Geophysical Union

    A Comparative Study of Pentaquark Interpolating Currents

    Full text link
    In a diquark-diquark-antiquark picture of pentaquarks, we use two interpolating currents to calculate the mass of the recently measured Ξ\Xi^{--} state in the framework of QCD sum rules. We show that, even though yielding similar values for mΞm_{\Xi^{--}} (and close to the experimental value), these currents differ from each other in what concerns the strength of the pole, convergence of the OPE and sensitivity to the continuum threshold parameter.Comment: 19 pages, 8 figures, replaced version accepted for publication in Phys. Lett.

    Are Θ+\Theta^+ and the Roper resonance diquark-diquark-antiquark states?

    Full text link
    We consider a [ud]2sˉ[ud]^2\bar{s} current in the QCD sum rule framework to study the mass of the recently observed pentaquark state Θ+(1540)\Theta^+(1540), obtaining good agreement with the experimental value. We also study the mass of the pentaquark [ud]2dˉ[ud]^2\bar{d}. Our results are compatible with the interpretation of the [ud]2dˉ[ud]^2\bar{d} state as being the Roper resonance N(1440), as suggested by Jaffe and Wilczek.Comment: 9 pages RevTex4 and 3 eps figures. Revised version accepted for publication in Phys. Lett.

    Branding the nation: Towards a better understanding

    Get PDF
    This paper aims to clarify some misunderstanding about nation branding. It examines the origins and interpretations of the concept, and draws a comparison between nation branding and commercial branding. A new definition is offered that emphasises the need to shift from “branding” the nation to nation image management

    Classical limit of the Casimir entropy for scalar massless field

    Full text link
    We study the Casimir effect at finite temperature for a massless scalar field in the parallel plates geometry in N spatial dimensions, under various combinations of Dirichlet and Neumann boundary conditions on the plates. We show that in all these cases the entropy, in the limit where energy equipartitioning applies, is a geometrical factor whose sign determines the sign of the Casimir force.Comment: 14 page

    Baryons as non-topological chiral solitons

    Full text link
    The present review gives a survey of recent developments and applications of the Nambu--Jona-Lasinio model with Nf=2N_f=2 and Nf=3N_f=3 quark flavors for the structure of baryons. The model is an effective chiral quark theory which incorporates the SU(Nf_f)L_L\otimesSU(Nf_f)R_R\otimesU(1)V_V approximate symmetry of Quantum chromodynamics. The approach describes the spontaneous chiral symmetry breaking and dynamical quark mass generation. Mesons appear as quark-antiquark excitations and baryons arise as non-topological solitons with three valence quarks and a polarized Dirac sea. For the evaluation of the baryon properties the present review concentrates on the non-linear Nambu--Jona-Lasinio model with quark and Goldstone degrees of freedom which is identical to the Chiral quark soliton model obtained from the instanton liquid model of the QCD vacuum. In this non-linear model, a wide variety of observables of baryons of the octet and decuplet is considered. These include, in particular, electromagnetic, axial, pseudoscalar and pion nucleon form factors and the related static properties like magnetic moments, radii and coupling constants of the nucleon as well as the mass splittings and electromagnetic form factors of hyperons. Predictions are given for the strange form factors, the scalar form factor and the tensor charge of the nucleon.Comment: 104 pages, 27 figures as uuencoded and compressed postscript files , hardcopy available upon request; Prog.Part.Nucl.Phys. 37 (1996) (in print

    Localization of nonlinear excitations in curved waveguides

    Full text link
    Motivated by the example of a curved waveguide embedded in a photonic crystal, we examine the effects of geometry in a ``quantum channel'' of parabolic form. We study the linear case and derive exact as well as approximate expressions for the eigenvalues and eigenfunctions of the linear problem. We then proceed to the nonlinear setting and its stationary states in a number of limiting cases that allow for analytical treatment. The results of our analysis are used as initial conditions in direct numerical simulations of the nonlinear problem and localized excitations are found to persist, as well as to have interesting relaxational dynamics. Analogies of the present problem in contexts related to atomic physics and particularly to Bose-Einstein condensation are discussed.Comment: 14 pages, 4 figure

    Effects of eight-quark interactions on the hadronic vacuum and mass spectra of light mesons

    Get PDF
    The combined effective low energy QCD Lagrangians of Nambu -- Jona-Lasinio (NJL) and 't Hooft are supplemented with eight-quark interactions. This work is a follow-up of recent findings, namely (i) the six quark flavour determinant 't Hooft term destabilizes the NJL vacuum, (ii) the addition of a chiral invariant eight-fermion contact term renders the ground state of the theory globally stable; (iii) stability constrains the values of coupling constants of the model, meaning that even in the presence of eight-quark forces the system can be unstable in a certain parameter region. In the present work we study a phenomenological output of eight-quark interactions considering the mass spectra of pseudoscalar and scalar mesons. Mixing angles are obtained and their equivalence to the two angle approach is derived. We show that the masses of pseudoscalars are almost neutral to the eight-quark forces. The only marked effect of the second order in the SU(3) breaking is found in the ηη\eta -\eta' system. The scalars are more sensitive to the eight-quark interactions. A strong repulsion between the singlet-octet members is the reason for the obtained low mass of the σ\sigma state within the model considered.Comment: LaTeX, 46 pages, two figure
    corecore