11 research outputs found

    Pathomechanisms in schwannoma development and progression

    No full text
    Schwannomas are tumors of the peripheral nervous system, consisting of different cell types. These include tumorigenic Schwann cells, axons, macrophages, T cells, fibroblasts, blood vessels, and an extracellular matrix. All cell types involved constitute an intricate 'tumor microenvironment' and play relevant roles in the development and progression of schwannomas. Although Nf2 tumor suppressor gene-deficient Schwann cells are the primary tumorigenic element and principle focus of current research efforts, evidence is accumulating regarding the contributory roles of other cell types in schwannoma pathology. In this review, we aim to provide an overview of intra- and intercellular mechanisms contributing to schwannoma formation. 'Genes load the gun, environment pulls the trigger.' -George A. Bray

    A multimetric approach to evaluate offshore mussel aquaculture effects on the taxonomical and functional diversity of macrobenthic communities

    No full text
    A multimetric approach was used to detect structural, compositional, and functional shifts in the underlying macrobenthic communities of an offshore mussel (Mytilus galloprovincialis) farm in a Portuguese Aquaculture Production Area. Sampling stations distributed inside and outside this area were used to evaluate sediment descriptors and macrobenthic samples collected before (April and September 2010) and after (June and September 2014) the initiation of mussel farming. Sediment fine fraction, organic matter content, and trace element concentrations were found to increase with depth, independently from the mussel farm. Moreover, the structure and composition of the macrobenthic communities were likewise structured by depth. Turnover was the dominant temporal and spatial pattern of beta diversity for all communities. Furthermore, the functional diversity of these communities was unaffected by the mussel farm. These results suggested that an offshore profile allowed hydrodynamic conditions to weaken the impact of mussel farming and highlighted the importance of conducting an integrative multimetric analysis when studying aquaculture impacts on benthic communities.FEDER Program through the project IAPAA "Avaliacao do impacto da area de producao aquicola da Armona no ecossistema costeiro e comunidades locais" (PROMAR project) [31-03-01-FEP-0014
    corecore