26 research outputs found

    Exotic clouds in the local interstellar medium

    Full text link
    The neutral interstellar medium (ISM) inside the Local Bubble (LB) has been known to have properties typical of the warm neutral medium (WNM). However, several recent neutral hydrogen (HI) absorption experiments show evidence for the existence of at least several cold diffuse clouds inside or at the boundary of the LB, with properties highly unusual relative to the traditional cold neutral medium. These cold clouds have a low HI column density, and AU-scale sizes. As the kinematics of cold and warm gas inside the LB are similar, this suggests a possibility of all these different flavors of the local ISM belonging to the same interstellar flow. The co-existence of warm and cold phases inside the LB is exciting as it can be used to probe the thermal pressure inside the LB. In addition to cold clouds, several discrete screens of ionized scattering material are clearly located inside the LB. The cold exotic clouds inside the LB are most likely long-lived, and we expect many more clouds with similar properties to be discovered in the future with more sensitive radio observations. While physical mechanisms responsible for the production of such clouds are still poorly understood, dynamical triggering of phase conversion and/or interstellar turbulence are likely to play an important role.Comment: 10 pages, refereed, accepted for publication in the proceedings of the "From the Outer Heliosphere to the Local Bubble: Comparisons of New Observations with Theory" conference, Space Science Review

    Black Holes from Nucleating Strings

    Full text link
    We evaluate the probability that a loop of string that has spontaneously nucleated during inflation will form a black hole upon collapse, after the end of inflation. We then use the observational bounds on the density of primordial black holes to put constraints on the parameters of the model. Other constraints from the distortions of the microwave background and emission of gravitational radiation by the loops are considered. Also, observational constraints on domain wall nucleation and monopole pair production during inflation are briefly discussed.Comment: 27 pages, tutp-92-

    Evolution of cosmic string configurations

    Get PDF
    We extend and develop our previous work on the evolution of a network of cosmic strings. The new treatment is based on an analysis of the probability distribution of the end-to-end distance of a randomly chosen segment of left-moving string of given length. The description involves three distinct length scales: ξ\xi, related to the overall string density, ξˉ\bar\xi, the persistence length along the string, and ζ\zeta, describing the small-scale structure, which is an important feature of the numerical simulations that have been done of this problem. An evolution equation is derived describing how the distribution develops in time due to the combined effects of the universal expansion, of intercommuting and loop formation, and of gravitational radiation. With plausible assumptions about the unknown parameters in the model, we confirm the conclusions of our previous study, that if gravitational radiation and small-scale structure effects are neglected, the two dominant length scales both scale in proportion to the horizon size. When the extra effects are included, we find that while ξ\xi and ξˉ\bar\xi grow, ζ\zeta initially does not. Eventually, however, it does appear to scale, at a much lower level, due to the effects of gravitational back-reaction.Comment: 61 pages, requires RevTex v3.0, SUSSEX-TH-93/3-4, IMPERIAL/TP/92-93/4

    Pulsars as Fantastic Objects and Probes

    Full text link
    Pulsars are fantastic objects, which show the extreme states of matters and plasma physics not understood yet. Pulsars can be used as probes for the detection of interstellar medium and even the gravitational waves. Here I review the basic facts of pulsars which should attract students to choose pulsar studies as their future projects.Comment: Invited Lecture on the "First Kodai-Trieste Workshop on Plasma Astrophysics", Kodaikanal Obs, India. Aug.27-Sept.7th, 2007. In: "Turbulence, Dynamos, Accretion Disks, Pulsars and Collective Plasma Processes". Get a copy from: http://www.springerlink.com/content/978-1-4020-8867-

    Topological Defects and CMB anisotropies : Are the predictions reliable ?

    Get PDF
    We consider a network of topological defects which can partly decay into neutrinos, photons, baryons, or Cold Dark Matter. We find that the degree-scale amplitude of the cosmic microwave background (CMB) anisotropies as well as the shape of the matter power spectrum can be considerably modified when such a decay is taken into account. We conclude that present predictions concerning structure formation by defects might be unreliable.Comment: 14 pages, accepted for publication in PR

    The International Pulsar Timing Array: First data release

    Get PDF
    International audienceThe highly stable spin of neutron stars can be exploited for a variety of (astro)physical investigations. In particular, arrays of pulsars with rotational periods of the order of milliseconds can be used to detect correlated signals such as those caused by gravitational waves. Three such 'pulsar timing arrays' (PTAs) have been set up around the world over the past decades and collectively form the 'International' PTA (IPTA). In this paper, we describe the first joint analysis of the data from the three regional PTAs, i.e. of the first IPTA data set. We describe the available PTA data, the approach presently followed for its combination and suggest improvements for future PTA research. Particular attention is paid to subtle details (such as underestimation of measurement uncertainty and long-period noise) that have often been ignored but which become important in this unprecedentedly large and inhomogeneous data set. We identify and describe in detail several factors that complicate IPTA research and provide recommendations for future pulsar timing efforts. The first IPTA data release presented here (and available on-line) is used to demonstrate the IPTA's potential of improving upon gravitational-wave limit
    corecore