199 research outputs found

    Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine and Petroleum Geology 25 (2008): 942-951, doi:10.1016/j.marpetgeo.2008.01.016.Pore waters extracted from 18 piston cores obtained on and near a salt-cored bathymetric high in Keathley Canyon lease block 151 in the northern Gulf of Mexico contain elevated concentrations of chloride (up to 838 mM) and have pore water chemical concentration profiles that exhibit extensive departures (concavity) from steady-state (linear) diffusive equilibrium with depth. Minimum δ13C dissolved inorganic carbon (DIC) values of −55.9‰ to −64.8‰ at the sulfate–methane transition (SMT) strongly suggest active anaerobic oxidation of methane (AOM) throughout the study region. However, the nonlinear pore water chemistry-depth profiles make it impossible to determine the vertical extent of active AOM or the potential role of alternate sulfate reduction pathways. Here we utilize the conservative (non-reactive) nature of dissolved chloride to differentiate the effects of biogeochemical activity (e.g., AOM and/or organoclastic sulfate reduction) relative to physical mixing in high salinity Keathley Canyon sediments. In most cases, the DIC and sulfate concentrations in pore waters are consistent with a conservative mixing model that uses chloride concentrations at the seafloor and the SMT as endmembers. Conservative mixing of pore water constituents implies that an undetermined physical process is primarily responsible for the nonlinearity of the pore water-depth profiles. In limited cases where the sulfate and DIC concentrations deviated from conservative mixing between the seafloor and SMT, the δ13C-DIC mixing diagrams suggest that the excess DIC is produced from a 13C-depleted source that could only be accounted for by microbial methane, the dominant form of methane identified during this study. We conclude that AOM is the most prevalent sink for sulfate and that it occurs primarily at the SMT at this Keathley Canyon site.This work was supported by DOE’s National Energy Technology Laboratory, the Office of Naval Research, and the Naval Research Laboratory. J.W.P was supported by a USGS Mendenhall Postdoctoral Research Fellowship Program during preparation of this manuscript

    Geologic framework of the 2005 Keathley Canyon gas hydrate research well, northern Gulf of Mexico

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine and Petroleum Geology 25 (2008): 906-918, doi:10.1016/j.marpetgeo.2008.01.012.The Keathley Canyon sites drilled in 2005 by the Chevron Joint Industry Project are located along the southeastern edge of an intraslope minibasin (Casey basin) in the northern Gulf of Mexico at 1335 m water depth. Around the drill sites, a grid of 2D high-resolution multichannel seismic data designed to image depths down to at least 1000 m sub-bottom reveals 7 unconformities and disconformities that, with the seafloor, bound 7 identifiable seismic stratigraphic units. A major disconformity in the middle of the units stands out for its angular baselapping geometry. From these data, three episodes of sedimentary deposition and deformation are inferred. The oldest episode consists of fine-grained muds deposited during a period of relative stability in the basin (units e, f, and g). Both the BSR and inferred gas hydrate occur within these older units. The gas hydrate occurs in near-vertical fractures. A second episode (units c and d) involved large vertical displacements associated with infilling and ponding of sediment. This second interval corresponds to deposition of intercalated fine and coarse-grained material that was recovered in the drill hole that penetrated the thin edges of the regionally much thicker units. The final episode of deposition (units a and b) occurred during more subdued vertical motions. Hemipelagic drape (unit a) characterizes the modern seafloor. The present-day Casey basin is mostly filled. Its sill is part of a subsiding graben structure that is only 10–20 m shallower than the deepest point in the basin, indicating that gravity-driven transport would mostly bypass the basin. Contemporary faulting along the basin margins has selectively reactivated an older group of faults. The intercalated sand and mud deposits of units c and d are tentatively correlated with Late Pleistocene deposition derived from the western shelf-edge delta/depocenter of the Mississippi River, which was probably most active from 320 ka to 70 ka [Winker, C.D., Booth, J., 2000. Sedimentary dynamics of the salt-dominated continental slope, Gulf of Mexico: integration of observations from the seafloor, near-surface, and deep subsurface. In: Proceedings of the GCSSEPM Foundation 20th Annual Research Conference, Deep-water Reservoirs of the World, pp. 1059–1086]. The presence of sand within the gas hydrate stability zone (in units c and d) is not sufficient to concentrate gas hydrate even though dispersed gas hydrate occurs deeper in the fractured mud/clay-rich sections of units e and f.Partial support for the field and interpretive aspects of this project were provided by the Department of Energy, National Energy Technology Lab (NETL)

    SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness

    Get PDF
    A vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to control the coronavirus disease 2019 (COVID-19) global pandemic. Structural studies have led to the development of mutations that stabilize Betacoronavirus spike proteins in the prefusion state, improving their expression and increasing immunogenicity1. This principle has been applied to design mRNA-1273, an mRNA vaccine that encodes a SARS-CoV-2 spike protein that is stabilized in the prefusion conformation. Here we show that mRNA-1273 induces potent neutralizing antibody responses to both wild-type (D614) and D614G mutant2 SARS-CoV-2 as well as CD8+ T cell responses, and protects against SARS-CoV-2 infection in the lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a phase III trial to evaluate its efficacy

    The ‘mosaic habitat’ concept in human evolution: past and present

    Get PDF
    The habitats preferred by hominins and other species are an important theme in palaeoanthropology, and the ‘mosaic habitat’ (also referred to as habitat heterogeneity) has been a central concept in this regard for the last four decades. Here we explore the development of this concept – loosely defined as a range of different habitat types, such as woodlands, riverine forest and savannah within a limited spatial area– in studies of human evolution in the last sixty years or so. We outline the key developments that took place before and around the time when the term ‘mosaic’ came to wider palaeoanthropological attention. To achieve this we used an analysis of the published literature, a study of illustrations of hominin evolution from 1925 onwards and an email survey of senior researchers in palaeoanthropology and related fields. We found that the term mosaic starts to be applied in palaeoanthropological thinking during the 1970’s due to the work of a number of researchers, including Karl Butzer and Glynn Isaac , with the earliest usage we have found of ‘mosaic’ in specific reference to hominin habitats being by Adriaan Kortlandt (1972). While we observe a steady increase in the numbers of publications reporting mosaic palaeohabitats, in keeping with the growing interest and specialisation in various methods of palaeoenvironmental reconstruction, we also note that there is a lack of critical studies that define this habitat, or examine the temporal and spatial scales associated with it. The general consensus within the field is that the concept now requires more detailed definition and study to evaluate its role in human evolution

    Reforming Watershed Restoration: Science in Need of Application and Applications in Need of Science

    Full text link
    • …
    corecore