139 research outputs found

    Probing Supersymmetry With Third-Generation Cascade Decays

    Full text link
    The chiral structure of supersymmetric particle couplings involving third generation Standard Model fermions depends on left-right squark and slepton mixings as well as gaugino-higgsino mixings. The shapes and intercorrelations of invariant mass distributions of a first or second generation lepton with bottoms and taus arising from adjacent branches of SUSY cascade decays are shown to be a sensitive probe of this chiral structure. All possible cascade decays that can give rise to such correlations within the MSSM are considered. For bottom-lepton correlations the distinctive structure of the invariant mass distributions distinguishes between decays originating from stop or sbottom squarks through either an intermediate chargino or neutralino. For decay through a chargino the spins of the stop and chargino are established by the form of the distribution. When the bottom charge is signed through soft muon tagging, the structure of the same-sign and opposite-sign invariant mass distributions depends on a set function of left-right and gaugino-higgsino mixings, as well as establishes the spins of all the superpartners in the sequential two-body cascade decay. Tau-lepton and tau-tau invariant mass distributions arising from MSSM cascade decays are likewise systematically considered with particular attention to their dependence on tau polarization. All possible tau-lepton and tau-tau distributions are plotted using a semi-analytic model for hadronic one-prong taus. Algorithms for fitting tau-tau and tau-lepton distributions to data are suggested.Comment: 35 pages, 17 .eps figure

    Multiplicities, fluctuations and QCD: Interplay between soft and hard physics?

    Get PDF
    Multiplicity fluctuations are studied both globaly (in terms of high-order moments) and locally (in terms of small phase-space intervals). The ratio of cumulant factorial to factorial moments of the charged-particle multiplicity distribution shows a quasi-oscillatory behaviour similar to that predicted by the NNLLA of perturbative QCD. However, an analysis of the sub-jet multiplicity distribution at perturbative scales shows that these oscillations cannot be related to the NNLLA prediction. We investigate how it is possible to reproduce the oscillations within the framework of Monte-Carlo models. Furthermore, local multiplicity fluctuations in angular phase-space intervals are compared with Monte-Carlo models and with first-order QCD predictions. While JETSET reproduces the experimental data very well, the predictions of the Double Leading Log Approximations and estimates obtained in Modified Leading Log Approximations deviate significantly from the data.Comment: 11 pages, 11 eps figures, Presented at the XXVII Symposium on Multiparticle Dynamics, September 8-12, 1997 Frascati-Rome, Ital

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation

    Bose-Einstein Correlations of Neutral and Charged Pions in Hadronic Z Decays

    Get PDF
    Bose-Einstein correlations of both neutral and like-sign charged pion pairs are measured in a sample of 2 million hadronic Z decays collected with the L3 detector at LEP. The analysis is performed in the four-momentum difference range 300 MeV < Q < 2 GeV. The radius of the neutral pion source is found to be smaller than that of charged pions. This result is in qualitative agreement with the string fragmentation model

    Study of the e+e- -> Ze+e- process at LEP

    Get PDF
    The cross section of the process e+e- -> Ze+e is measured with 0.7fb^-1 of data collected with the L3 detector at LEP. Decays of the Z boson into quarks and muons are considered at centre-of-mass energies ranging from 183GeV up to 209GeV. The measurements are found to agree with Standard Model predictions, achieving a precision of about 10% for the hadronic channel

    Search for a Higgs Boson Decaying to Weak Boson Pairs at LEP

    Get PDF
    A Higgs particle produced in association with a Z boson and decaying into weak boson pairs is searched for in 336.4 1/pb of data collected by the L3 experiment at LEP at centre-of-mass energies from 200 to 209 GeV. Limits on the branching fraction of the Higgs boson decay into two weak bosons as a function of the Higgs mass are derived. These results are combined with the L3 search for a Higgs boson decaying to photon pairs. A Higgs produced with a Standard Model e+e- --> Zh cross section and decaying only into electroweak boson pairs is excluded at 95% CL for a mass below 107 GeV

    Measurement of the W+W-gamma Cross Section and Direct Limits on Anomalous Quartic Gauge Boson Couplings at LEP

    Get PDF
    The process e+e- -> W+W-gamma is analysed using the data collected with the L3 detector at LEP at a centre-of-mass energy of 188.6GeV, corresponding to an integrated luminosity of 176.8pb^-1. Based on a sample of 42 selected W+W- candidates containing an isolated hard photon, the W+W-gamma cross section, defined within phase-space cuts, is measured to be: sigma_WWgamma = 290 +/- 80 +/- 16 fb, consistent with the Standard Model expectation. Including the process e+e- -> nu nu gamma gamma, limits are derived on anomalous contributions to the Standard Model quartic vertices W+W- gamma gamma and W+W-Z gamma at 95% CL: -0.043 GeV^-2 < a_0/Lambda^2 < 0.043 GeV^-2 0.08 GeV^-2 < a_c/Lambda^2 < 0.13 GeV^-2 0.41 GeV^-2 < a_n/Lambda^2 < 0.37 GeV^-2

    Lambda and Sigma0 Pair Production in Two-Photon Collisions at LEP

    Full text link
    Strange baryon pair production in two-photon collisions is studied with the L3 detector at LEP. The analysis is based on data collected at e+e- centre-of-mass energies from 91 GeV to 208 GeV, corresponding to an integrated luminosity of 844 pb-1. The processes gamma gamma -> Lambda Anti-lambda and gamma gamma -> Sigma0 Anti-sigma0 are identified. Their cross sections as a function of the gamma gamma centre-of-mass energy are measured and results are compared to predictions of the quark-diquark model

    Production of Single W Bosons at \sqrt{s}=189 GeV and Measurement of WWgamma Gauge Couplings

    Full text link
    Single W boson production in electron-positron collisions is studied with the L3 detector at LEP. The data sample collected at a centre-of-mass energy of \sqrt{s} = 188.7GeV corresponds to an integrated luminosity of 176.4pb^-1. Events with a single energetic lepton or two acoplanar hadronic jets are selected. Within phase-space cuts, the total cross-section is measured to be 0.53 +/- 0.12 +/- 0.03 pb, consistent with the Standard Model expectation. Including our single W boson results obtained at lower \sqrt{s}, the WWgamma gauge couplings kappa_gamma and lambda_gamma are determined to be kappa_gamma = 0.93 +/- 0.16 +/- 0.09 and lambda_gamma = -0.31 +0.68 -0.19 +/- 0.13
    • 

    corecore