107 research outputs found

    Metabolomics reveals mouse plasma metabolite responses to acute exercise and effects of disrupting AMPK-glycogen interactions

    Get PDF
    Introduction: The AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis that becomes activated by exercise and binds glycogen, an important energy store required to meet exercise-induced energy demands. Disruption of AMPK-glycogen interactions in mice reduces exercise capacity and impairs whole-body metabolism. However, the mechanisms underlying these phenotypic effects at rest and following exercise are unknown. Furthermore, the plasma metabolite responses to an acute exercise challenge in mice remain largely uncharacterized. Methods: Plasma samples were collected from wild type (WT) and AMPK double knock-in (DKI) mice with disrupted AMPK-glycogen binding at rest and following 30-min submaximal treadmill running. An untargeted metabolomics approach was utilized to determine the breadth of plasma metabolite changes occurring in response to acute exercise and the effects of disrupting AMPK-glycogen binding. Results: Relative to WT mice, DKI mice had reduced maximal running speed (p < 0.0001) concomitant with increased body mass (p < 0.01) and adiposity (p < 0.001). A total of 83 plasma metabolites were identified/annotated, with 17 metabolites significantly different (p < 0.05; FDR<0.1) in exercised (↑6; ↓11) versus rested mice, including amino acids, acylcarnitines and steroid hormones. Pantothenic acid was reduced in DKI mice versus WT. Distinct plasma metabolite profiles were observed between the rest and exercise conditions and between WT and DKI mice at rest, while metabolite profiles of both genotypes converged following exercise. These differences in metabolite profiles were primarily explained by exercise-associated increases in acylcarnitines and steroid hormones as well as decreases in amino acids and derivatives following exercise. DKI plasma showed greater decreases in amino acids following exercise versus WT. Conclusion: This is the first study to map mouse plasma metabolomic changes following a bout of acute exercise in WT mice and the effects of disrupting AMPK-glycogen interactions in DKI mice. Untargeted metabolomics revealed alterations in metabolite profiles between rested and exercised mice in both genotypes, and between genotypes at rest. This study has uncovered known and previously unreported plasma metabolite responses to acute exercise in WT mice, as well as greater decreases in amino acids following exercise in DKI plasma. Reduced pantothenic acid levels may contribute to differences in fuel utilization in DKI mice

    A measurement of the tau mass and the first CPT test with tau leptons

    Full text link
    We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV using tau pairs from Z0 decays. To test CPT invariance we compare the masses of the positively and negatively charged tau leptons. The relative mass difference is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.

    Measurement of the B0 Lifetime and Oscillation Frequency using B0->D*+l-v decays

    Full text link
    The lifetime and oscillation frequency of the B0 meson has been measured using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP. The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the production flavour of the B0 mesons was determined using a combination of tags from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d = 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first error is statistical and the second systematic.Comment: 17 pages, 4 figures, submitted to Phys. Lett.

    Search for Higgs Bosons in e+e- Collisions at 183 GeV

    Get PDF
    The data collected by the OPAL experiment at sqrts=183 GeV were used to search for Higgs bosons which are predicted by the Standard Model and various extensions, such as general models with two Higgs field doublets and the Minimal Supersymmetric Standard Model (MSSM). The data correspond to an integrated luminosity of approximately 54pb-1. None of the searches for neutral and charged Higgs bosons have revealed an excess of events beyond the expected background. This negative outcome, in combination with similar results from searches at lower energies, leads to new limits for the Higgs boson masses and other model parameters. In particular, the 95% confidence level lower limit for the mass of the Standard Model Higgs boson is 88.3 GeV. Charged Higgs bosons can be excluded for masses up to 59.5 GeV. In the MSSM, mh > 70.5 GeV and mA > 72.0 GeV are obtained for tan{beta}>1, no and maximal scalar top mixing and soft SUSY-breaking masses of 1 TeV. The range 0.8 < tanb < 1.9 is excluded for minimal scalar top mixing and m{top} < 175 GeV. More general scans of the MSSM parameter space are also considered.Comment: 49 pages. LaTeX, including 33 eps figures, submitted to European Physical Journal

    A Measurement of the Product Branching Ratio f(b->Lambda_b).BR(Lambda_b->Lambda X) in Z0 Decays

    Get PDF
    The product branching ratio, f(b->Lambda_b).BR(Lambda_b->Lambda X), where Lambda_b denotes any weakly-decaying b-baryon, has been measured using the OPAL detector at LEP. Lambda_b are selected by the presence of energetic Lambda particles in bottom events tagged by the presence of displaced secondary vertices. A fit to the momenta of the Lambda particles separates signal from B meson and fragmentation backgrounds. The measured product branching ratio is f(b->Lambda_b).BR(Lambda_b->Lambda X) = (2.67+-0.38(stat)+0.67-0.60(sys))% Combined with a previous OPAL measurement, one obtains f(b->Lambda_b).BR(Lambda_b->Lambda X) = (3.50+-0.32(stat)+-0.35(sys))%.Comment: 16 pages, LaTeX, 3 eps figs included, submitted to the European Physical Journal

    WW Production Cross Section and W Branching Fractions in e+e- Collisions at 189 GeV

    Get PDF
    From a data sample of 183 pb^-1 recorded at a center-of-mass energy of roots = 189 GeV with the OPAL detector at LEP, 3068 W-pair candidate events are selected. Assuming Standard Model W boson decay branching fractions, the W-pair production cross section is measured to be sigmaWW = 16.30 +- 0.34(stat.) +- 0.18(syst.) pb. When combined with previous OPAL measurements, the W boson branching fraction to hadrons is determined to be 68.32 +- 0.61(stat.) +- 0.28(syst.) % assuming lepton universality. These results are consistent with Standard Model expectations.Comment: 22 pages, 5 figures, submitted to Phys. Lett.

    Genuine Correlations of Like-Sign Particles in Hadronic Z0 Decays

    Get PDF
    Correlations among hadrons with the same electric charge produced in Z0 decays are studied using the high statistics data collected from 1991 through 1995 with the OPAL detector at LEP. Normalized factorial cumulants up to fourth order are used to measure genuine particle correlations as a function of the size of phase space domains in rapidity, azimuthal angle and transverse momentum. Both all-charge and like-sign particle combinations show strong positive genuine correlations. One-dimensional cumulants initially increase rapidly with decreasing size of the phase space cells but saturate quickly. In contrast, cumulants in two- and three-dimensional domains continue to increase. The strong rise of the cumulants for all-charge multiplets is increasingly driven by that of like-sign multiplets. This points to the likely influence of Bose-Einstein correlations. Some of the recently proposed algorithms to simulate Bose-Einstein effects, implemented in the Monte Carlo model PYTHIA, are found to reproduce reasonably well the measured second- and higher-order correlations between particles with the same charge as well as those in all-charge particle multiplets.Comment: 26 pages, 6 figures, Submitted to Phys. Lett.

    US hegemony and the origins of Japanese nuclear power : the politics of consent

    Get PDF
    This paper deploys the Gramscian concepts of hegemony and consent in order to explore the process whereby nuclear power was brought to Japan. The core argument is that nuclear power was brought to Japan as a consequence of US hegemony. Rather than a simple manifestation of one state exerting material ‘power over' another, bringing nuclear power to Japan involved a series of compromises worked out within and between state and civil society in both Japan and the USA. Ideologies of nationalism, imperialism and modernity underpinned the process, coalescing in post-war debates about the future trajectory of Japanese society, Japan's Cold War alliance with the USA and the role of nuclear power in both. Consent to nuclear power was secured through the generation of a psychological state in the public mind combining the fear of nuclear attack and the hope of unlimited consumption in a nuclear-fuelled post-modern world

    Determination of the b Quark Mass at the Z Mass Scale

    Get PDF
    In hadronic decays of Z bosons recorded with the OPAL detector at LEP, events containing b quarks were selected using the long lifetime of b flavoured hadrons. Comparing the 3-jet rate in b events with that in d u,s and c quark events, a significant difference was observed. Using Order(alpha_s squared) calculations for massive quarks, this difference was used to determine the b quark mass in the MSbar renormalisation scheme at the scale of the Z boson mass. By combining the results from seven different jet finders the running b quark mass was determined to be mb(MZ) = (2.67 +/- 0.03(stat) +0.29/-0.37(syst) +/- 0.19(theo.)) GeV. Evolving this value to the b quark mass scale itself yields mb(mb) = (3.95 +0.52/-0.62) GeV, consistent with results obtained at the b quark production threshold. This determination confirms the QCD expectation of a scale dependent quark mass. A constant mass is ruled out by 3.9 standard deviations

    A Study of One-Prong Tau Decays with a Charged Kaon

    Get PDF
    From an analysis of the ionisation energy loss of charged particles selected from 110326 e+e- -> tau+tau- candidates recorded by the OPAL detector at e+e- centre-of-mass energies near the Z0 resonance, we determine the one-prong tau decay branching ratios: Br(tau- -> nu_tau K- >=0h0) = 1.528 +- 0.039 +- 0.040 % Br(tau- -> nu_tau K-) = 0.658 +- 0.024 +- 0.029 % where the h0 notation refers to a pi0, an eta, a K^0_S, or a K^0_L, and where the first uncertainty is statistical and the second is systematic.From an analysis of the ionisation energy loss of charged particles selected from 110326 e+e- -> tau+tau- candidates recorded by the OPAL detector at e+e- centre-of-mass energies near the Z0 resonance, we determine the one-prong tau decay branching ratios: Br(tau- -> nu_tau K- >=0h0) = 1.528 +- 0.039 +- 0.040 % Br(tau- -> nu_tau K-) = 0.658 +- 0.024 +- 0.029 % where the h0 notation refers to a pi0, an eta, a K^0_S, or a K^0_L, and where the first uncertainty is statistical and the second is systematic
    corecore