19 research outputs found

    Oxytocin reverses osteoporosis in a sex-dependent manner.

    Get PDF
    The increase of life expectancy has led to the increase of age-related diseases such as osteoporosis. Osteoporosis is characterized by bone weakening promoting the occurrence of fractures with defective bone regeneration. Men aged over 50 have a prevalence for osteoporosis of 20%, which is related to a decline in sex hormones occurring during andropause or surgical orchidectomy. As we previously demonstrated in a mouse model for menopause in women that treatment with the neurohypophyseal peptide hormone oxytocin (OT) normalizes body weight and prevents the development of osteoporosis, herein we addressed the effects of OT in male osteoporosis. Thus, we treated orchidectomized mice, an animal model suitable for the study of male osteoporosis, for 8 weeks with OT and then analyzed trabecular and cortical bone parameters as well as fat mass using micro-computed tomography. Orchidectomized mice displayed severe bone loss, muscle atrophy accompanied by fat mass gain as expected in andropause. Interestingly, OT treatment in male mice normalized fat mass as it did in female mice. However, although OT treatment led to a normalization of bone parameters in ovariectomized mice, this did not happen in orchidectomized mice. Moreover, loss of muscle mass was not reversed in orchidectomized mice upon OT treatment. All of these observations indicate that OT acts on fat physiology in both sexes, but in a sex specific manner with regard to bone physiology

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    The LHCb upgrade I

    Get PDF
    The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software

    A(2b) receptor mediates adenosine inhibition of taurine efflux from pituicytes

    No full text
    BACKGROUND INFORMATION: Recent work suggests that part of the control of vasopressin output is mediated by taurine released from pituicytes, the astroglial cells of the neurohypophysis. Taurine release, in turn, is stimulated by hypotonic conditions and by vasopressin itself. As adenosine is generated from ATP co-released with vasopressin, it appeared important to study its effects on taurine efflux from pituicytes. RESULTS: We measured radioactive efflux from cultured pituicytes and whole neurohypophyses pre-loaded with [(3)H]taurine. Cultured pituicytes were also used to study adenosine-receptor mRNA expression. Taurine efflux elicited by hypotonic shocks is approximately 30-50% smaller in the presence of 10 microM adenosine or 1 microM NECA (5'-N-ethylcarboxamidoadenosine). Both compounds also inhibited basal efflux in a manner that was not immediately reversible. Agonists of the adenosine A1-, A2a- or A3-receptor subtypes have no relevant effect on basal taurine release, and the A1-receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) has no effect on the inhibition of release by NECA. In turn, the A2b-receptor antagonists MRS 1706 {N-(4-acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]acetamide} or alloxazine partially reverse the inhibition of basal or hypotonicity-evoked efflux by NECA. Both A1- and A2b-receptor mRNAs are expressed in pituicytes, which is consistent with an A1-receptor-mediated effect on cell morphology and an A2b-receptor-mediated effect on taurine release. Forskolin and dibutyryl cAMP mimic the inhibitory effects of purinergics on basal taurine efflux, and the adenylate cyclase inhibitor DDA (2',5'-dideoxyadenosine) partially reverses the inhibition of the hypotonic response by NECA.Conclusions. Our results suggest that purinergic inhibition of taurine efflux from pituicytes operates through A2b receptors coupled to intracellular cAMP increase. They point to a possible modulation of neurohypophysial hormone output by endogenous adenosine released in either physiological or pathological situation

    IP-receptor and PPARs trigger the conversion of human white to brite adipocyte induced by carbaprostacyclin.

    No full text
    Brite adipocytes recently discovered in humans are of considerable importance in energy expenditure by converting energy excess into heat. This property could be useful in the treatment of obesity, and nutritional aspects are relevant to this important issue. Using hMADS cells as a human cell model which undergoes a white to a brite adipocyte conversion, we had shown previously that arachidonic acid, the major metabolite of the essential nutrient &Omega;6-linoleic acid, plays a major role in this process. Its metabolites PGE2 and PGF2 alpha inhibit this process via a calcium-dependent pathway, whereas in contrast carbaprostacyclin (cPGI2), a stable analog of prostacyclin, activates white to brite adipocyte conversion. Herein, we show that cPGI2 generates via its cognate cell-surface receptor IP-R, a cyclic AMP-signaling pathway involving PKA activity which in turn induces the expression of UCP1. In addition, cPGI2 activates the pathway of nuclear receptors of the PPAR family, i.e. PPAR&alpha; and PPAR&gamma;, which act separately from IP-R to up-regulate the expression of key genes involved in the function of brite adipocytes. Thus dual pathways are playing in concert for the occurrence of a browning process of human white adipocytes. These results make prostacyclin analogs as a new class of interesting molecules to treat obesity and associated diseases

    Mesoderm Specific Transcript (MEST) is a negative regulator of human adipocyte differentiation.

    No full text
    BackgroundA growing body of evidence suggests that many downstream pathologies of obesity are amplified or even initiated by molecular changes within white adipose tissue (WAT). Such changes are the result of an excessive expansion of individual white adipocytes and could potentially be ameliorated via an increase in de novo adipocyte recruitment (adipogenesis). Mesoderm specific transcript (MEST) is a protein with a putative yet unidentified enzymatic function and has previously been shown to correlate with adiposity and adipocyte size in mouse.ObjectivesThis study analysed WAT samples and employed a cell model of adipogenesis to characterise MEST expression and function in human.Methods and ResultsMEST mRNA and protein levels increased during adipocyte differentiation of human Multipotent Adipose-Derived Stem (hMADS) cells. Further, obese individuals displayed significantly higher MEST levels in WAT compared to normal weight subjects, and MEST was significantly correlated with adipocyte volume. In striking contrast to previous mouse studies, knockdown of MEST enhanced human adipocyte differentiation, most likely via a significant promotion of peroxisome proliferator-activated receptor (PPAR) signaling, glycolysis and fatty acid biosynthesis pathways at early stages. Correspondingly, overexpression of MEST impaired adipogenesis. We further found that silencing of MEST fully substitutes for the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) as inducer of adipogenesis. Accordingly, phosphorylation of the pro-adipogenic transcription factors cAMP response element-binding protein (CREB) and activating transcription factor 1 (ATF1) were highly increased upon MEST knockdown.ConclusionsWhile we found a similar association between MEST and adiposity as previously described for mouse, our functional analyses suggest that MEST acts as an inhibitor of human adipogenesis, contrary to previous murine studies. We have further established a novel link between MEST and CREB/ATF1 that could be of general relevance in regulation of metabolism, particularly obesity-associated diseases

    Involvement of BTBD1 in mesenchymal differentiation.

    No full text
    International audienceBTBD1 is a recently cloned BTB-domain-containing protein particularly expressed in skeletal muscle and interacting with DNA topoisomerase 1 (Topo1), a key enzyme of cell survival. We have previously demonstrated that stable overexpression of a N-terminal truncated BTBD1 inhibited ex vivo myogenesis but not adipogenesis of pluripotent C2C12 cells. Here, BTBD1 expression was studied in three models of cellular differentiation: myogenesis (C2C12 cells), adipogenesis (3T3-L1 cells) and osteogenesis (hMADS cells). BTBD1 mRNA was found to be upregulated during myogenesis. At the opposite, we have not observed BTBD1 upregulation in an altered myogenesis cellular model and we observed a downregulation of BTBD1 mRNA expression in adipogenesis. Interestingly, amounts of Topo1 protein, but not Topo1 mRNA, were found to be modulated at the opposite of BTBD1 mRNA. No variation of BTBD1 expression was measured during osteogenesis. Taken together, these results indicate that BTBD1 mRNA is specifically regulated during myogenic and adipogenic differentiation, in relation with Topo1 expression. Moreover, they corroborate observations made previously with truncated BTBD1 and show that BTBD1 is a key protein of balance between adipogenesis and myogenesis. Finally, a transcriptome analysis gave molecular clues to decipher BTBD1 role, with an emphasis on the involvement in ubiquitin/proteasome degradation pathway

    Let-7i-5p represses brite adipocyte function in mice and humans.

    No full text
    In response to cold or &beta;3-adrenoreceptor stimulation brown adipose tissue (BAT) promotes non-shivering thermogenesis, leading to energy dissipation. BAT has long been thought to be absent or scarce in adult humans. The recent discovery of thermogenic brite/beige adipocytes has opened the way to development of novel innovative strategies to combat overweight/obesity and associated diseases. Thus it is of great interest to identify regulatory factors that govern the brite adipogenic program. Here, we carried out global microRNA (miRNA) expression profiling on human adipocytes to identify miRNAs that are regulated upon the conversion from white to brite adipocytes. Among the miRNAs that were differentially expressed, we found that Let-7i-5p was down regulated in brite adipocytes. A detailed analysis of the Let-7i-5p levels showed an inverse expression of UCP1 in murine and human brite adipocytes both in vivo and in vitro. Functional studies with Let-7i-5p mimic in human brite adipocytes in vitro revealed a decrease in the expression of UCP1 and in the oxygen consumption rate. Moreover, the Let-7i-5p mimic when injected into murine sub-cutaneous white adipose tissue inhibited partially &beta;3-adrenergic activation of the browning process. These results suggest that the miRNAs Let-7i-5p participates in the recruitment and the function of brite adipocytes

    Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse.

    No full text
    International audienceHere, we report the isolation of a human multipotent adipose-derived stem (hMADS) cell population from adipose tissue of young donors. hMADS cells display normal karyotype; have active telomerase; proliferate >200 population doublings; and differentiate into adipocytes, osteoblasts, and myoblasts. Flow cytometry analysis indicates that hMADS cells are CD44+, CD49b+, CD105+, CD90+, CD13+, Stro-1(-), CD34-, CD15-, CD117-, Flk-1(-), gly-A(-), CD133-, HLA-DR(-), and HLA-I(low). Transplantation of hMADS cells into the mdx mouse, an animal model of Duchenne muscular dystrophy, results in substantial expression of human dystrophin in the injected tibialis anterior and the adjacent gastrocnemius muscle. Long-term engraftment of hMADS cells takes place in nonimmunocompromised animals. Based on the small amounts of an easily available tissue source, their strong capacity for expansion ex vivo, their multipotent differentiation, and their immune-privileged behavior, our results suggest that hMADS cells will be an important tool for muscle cell-mediated therapy

    White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways

    No full text
    Objective: Fat depots with thermogenic activity have been identified in humans. In mice, the appearance of thermogenic adipocytes within white adipose depots (so-called brown-in-white i.e., brite or beige adipocytes) protects from obesity and insulin resistance. Brite adipocytes may originate from direct conversion of white adipocytes. The purpose of this work was to characterize the metabolism of human brite adipocytes. Methods: Human multipotent adipose-derived stem cells were differentiated into white adipocytes and then treated with peroxisome proliferator-activated receptor (PPAR)γ or PPARα agonists between day 14 and day 18. Gene expression profiling was determined using DNA microarrays and RT-qPCR. Variations of mRNA levels were confirmed in differentiated human preadipocytes from primary cultures. Fatty acid and glucose metabolism was investigated using radiolabelled tracers, Western blot analyses and assessment of oxygen consumption. Pyruvate dehydrogenase kinase 4 (PDK4) knockdown was achieved using siRNA. In vivo, wild type and PPARα-null mice were treated with a β3-adrenergic receptor agonist (CL316,243) to induce appearance of brite adipocytes in white fat depot. Determination of mRNA and protein levels was performed on inguinal white adipose tissue. Results: PPAR agonists promote a conversion of white adipocytes into cells displaying a brite molecular pattern. This conversion is associated with transcriptional changes leading to major metabolic adaptations. Fatty acid anabolism i.e., fatty acid esterification into triglycerides, and catabolism i.e., lipolysis and fatty acid oxidation, are increased. Glucose utilization is redirected from oxidation towards glycerol-3-phophate production for triglyceride synthesis. This metabolic shift is dependent on the activation of PDK4 through inactivation of the pyruvate dehydrogenase complex. In vivo, PDK4 expression is markedly induced in wild-type mice in response to CL316,243, while this increase is blunted in PPARα-null mice displaying an impaired britening response. Conclusions: Conversion of human white fat cells into brite adipocytes results in a major metabolic reprogramming inducing fatty acid anabolic and catabolic pathways. PDK4 redirects glucose from oxidation towards triglyceride synthesis and favors the use of fatty acids as energy source for uncoupling mitochondria. Keywords: Brite/beige adipocyte, Peroxisome proliferator-activated receptor, Fatty acid metabolism, Glycerol metabolism, Pyruvate dehydrogenase kinase
    corecore