15 research outputs found

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Jupiter ICY moon explorer (JUICE): Advances in the design of the radar for Icy Moons (RIME)

    No full text
    This paper presents the Radar for Icy Moon Exploration (RIME) that is a fundamental payload in the Jupiter Icy Moon Explorer (JUICE) mission of the European Space Agency (ESA). RIME is a radar sounder aimed to study the subsurface of Jupiter's icy moons Ganymede, Europa and Callisto. The paper illustrates the main goals of RIME, its architecture and parameters and some recent advances in its design

    The Radar For Icy Moon Exploration (RIME) On The Juice Mission

    No full text
    The Radar for Icy Moon Exploration (RIME) is one of the main instruments included in the JUpiter ICy moons Explorer (JUICE) ESA mission. It is a radar sounder designed for studying the subsurface geology and geophysics of Galilean icy moons (i.e., Ganymede, Europa and Callisto) and for detecting possible subsurface water. RIME is designed for penetration of the icy moons up to a depth of 9 km. Two main operation scenarios are foreseen for RIME: i) flyby observations of Europa, Ganymede and Callisto (from a distance of 1000 km to the closest approach of about 400 km); and ii) circular orbital observations around Ganymede at 500 km of altitude. According to these scenarios, RIME is designed to explore the icy shell of the Galilean icy satellites by characterizing the wide range of compositional, thermal, and structural variation found in the subsurface of these moons. RIME observations will profile the ice shells of the Galilean icy satellites with specific focus on Ganymede given the circular orbital phase. The acquired measures will provide geological context on hemispheric (thousands of km), regional (hundreds of km with multiple overlaps), and targeted (tens of km) scales appropriate for a variety of hypothesis tests. RIME will operate in a single frequency band, centred at 9 MHz. The frequency was selected as the result of extensive study of penetration capabilities, surface roughness of the moons, Jovian radio noise, antenna accommodation, and system design. The 9 MHz frequency provides penetration capabilities and mitigation of surface scattering (which can cause signal loss and clutter issues), at the expense of mapping coverage, as it is likely to obtain high SNR observations only on the anti-Jovian side of the target moons. The RIME antenna is a 16 m dipole. The chirp pulse bandwidth is up to 3 MHz, which provides vertical resolution of about 50 m in ice after side lobe weighting. RIME will also operate with 1 MHz bandwidth to reduce data volume when observing deep sounding targets. This corresponds to a vertical resolution of about 140 m in ice. Within the high and low resolution modes, parameters can be adjusted to change the output data rate. RIME can downlink raw data for on-ground focusing or pre-processed data by a presuming operation for data rate reduction

    A technique for atmospheric measurements of stable carbon isotope ratios of isoprene, methacrolein, and methyl vinyl ketone

    No full text
    A technique was developed to measure stable carbon isotope ratios (13C/12C) of light volatile organic compounds (VOCs) such as isoprene, methacrolein (MACR) and methyl vinyl ketone (MVK) using gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS). An automated sampling and cryofocussing system allowed for the extraction of VOCs from air samples of up to 140 L of air collected over 3 h, and the subsequent 13C/12C analysis of the VOCs by GCC-IRMS. Chromatography using selective transfer between two columns was used to improve the separation for selected compounds, increasing peak resolution and attaining less noisy baselines. Still, some target compounds could not be completely separated from co-eluting peaks. To reduce the bias of isotope ratio determinations, which can result from incomplete peak resolution, a peak-fitting procedure has been developed. In cases of overlapping peaks or substantial baseline drift, this peak fitting allows more accurate determination of isotope ratios than conventional integration schemes. Comparisons between off-line IRMS measurements and a peak-evaluation procedure using a prepared VOC gas-phase standard show that isotope ratios derived from large (>1 ng of carbon per peak) and well-resolved peaks have a reproducibility of ±0.3‰. With smaller masses in the range of 0.1–1 ng of carbon, reproducibility decreased to ±(0.5–0.8)‰. For a 140 L sample of air, such small masses of carbon correspond to mixing ratios in the low pptV range. The developed measurement technique was applied to a small set of ambient air samples taken during hot, sunny periods from late May to early August, 2005, at Forschungszentrum Jülich, Germany, a semi-rural area. The range of δ13C values determined for isoprene, benzene, and toluene are consistent with those reported in the literature. GCC-IRMS results of δ13C for ambient samples of isoprene, MACR, and MVK, measured at mixing ratios of 15–280 pptV, are presented and discussed

    Measurement of the cosmic ray muon flux seasonal variation with the OPERA detector

    Get PDF
    The OPERA experiment discovered muon neutrino into tau neutrino oscillations in appearance mode, detecting tau leptons by means of nuclear emulsion films. The apparatus was also endowed with electronic detectors with tracking capability, such as scintillator strips and resistive plate chambers. Because of its location in the underground Gran Sasso laboratory, under 3800 m.w.e., the OPERA detector has also been used as an observatory for TeV muons produced by cosmic rays in the atmosphere. In this paper the measurement of the single muon flux modulation and its correlation with the seasonal cycle of atmospheric temperature is reported
    corecore