3,661 research outputs found

    Detailed pressure distribution on a blunted 60-deg half-angle cone at Mach numbers of 6.08 and 9.46

    Get PDF
    Pressure distribution of spherically-blunted 60 deg half-angle cone in hypersonic flo

    A Tight Upper Limit on Oscillations in the Ap star Epsilon Ursae Majoris from WIRE Photometry

    Full text link
    Observations of Epsilon UMa obtained with the star tracker on the Wide Field Infrared Explorer (WIRE) satellite during a month in mid-2000 are analyzed. This is one of the most precise photometry of an Ap star. The amplitude spectrum is used to set an upper limit of 75 parts per million for the amplitude of stellar pulsations in this star unless it accidentally oscillates with a single mode at the satellite orbit, its harmonics or their one day aliases. This is the tightest limit put on the amplitude of oscillations in an Ap star. As the rotation period of Epsilon UMa is relatively short (5.1 d), it cannot be argued that the observations were made at a wrong rotational phase. Our results thus support the idea that some Ap stars do not pulsate at all.Comment: 4 pages, 4 figures, 2 style files, accepted for publication in ApJ

    Combining WASP and Kepler data: the case of the Sct star KIC 7106205

    Get PDF
    Ground-based photometric observations from Wide Angle Search for Planets (WASP) have been calibrated, scaled and combined with Kepler observations of the δ Sct star KIC 7106205, allowing us to extend the time base of the study of the unexplained amplitude and frequency variation of a single pressure mode at ν = 13.3942 d−1 by 2 yr. Analysis of the combined data sets, spanning 6 yr, show that the amplitude modulation in KIC 7106205 has a much larger range than a previous study of the Kepler data alone indicated. The single pressure mode decreased from 11.70 ± 0.05 mmag in 2007, to 5.87 ± 0.03 mmag in 2009, and to 0.58 ± 0.06 mmag in 2013. Observations of the decrease in mode amplitude have now been extended back 2 yr before the launch of Kepler. With observations over a longer time span, we have been able to further investigate the decrease in mode amplitude in KIC 7106205 to address the question of mode amplitude stability in δ Sct stars. This study highlights the usefulness of the WASP data set for extending studies of some Kepler variable stars

    A Quantitative Non-radial Oscillation Model for the Subpulses in PSR B0943+10

    Get PDF
    In this paper, we analyze time series measurements of PSR B0943+10 and fit them with a non-radial oscillation model. The model we apply was first developed for total intensity measurements in an earlier paper, and expanded to encompass linear polarization in a companion paper to this one. We use PSR B0943+10 for the initial tests of our model because it has a simple geometry, it has been exhaustively studied in the literature, and its behavior is well-documented. As prelude to quantitative fitting, we have reanalyzed previously published archival data of PSR B0943+10 and uncovered subtle but significant behavior that is difficult to explain in the framework of the drifting spark model. Our fits of a non-radial oscillation model are able to successfully reproduce the observed behavior in this pulsar.Comment: 45 pages, 16 figures, accepted Ap

    Theoretical light curves of dipole oscillations in roAp stars

    Get PDF
    Context. The dipole modes are the most common geometry of oscillations in roAp stars inferred from photometric measurements and are therefore of special interest for asteroseismic purposes. Aims. We present a theoretical and analytical study of the light curves associated with dipole (ℓ = 1) pulsations of roAp stars in the framework of the revisited oblique pulsator model. Methods. We describe the light curves in terms of the inclination and polarization of the elliptical displacement vector of the dipole modes. We study the influence of the magnetic field and rotation on the shape of these light curves for both amplitudes and phases. Results. Despite the inclination of dipole mode with respect to the magnetic axis, we find that the dipole mode can have maxima that are in phase with the magnetic maxima. We apply our formalism to the well-known roAp star HR 3831 (HD 83368) to derive its mode properties. Our results are similar to those obtained by time-series spectroscopy. We also consider the cases of three other roAp stars, HD 6532, HD 99563, and HD 128898 (α Cir). Conclusions. We demonstrate that the formalism of the revisited oblique pulsator model is adequate to explain the properties of the photometric light curves associated with dipole modes in roAp stars. In addition, we show that the coincidence of pulsation and magnetic extrema can also occur for inclined modes with respect to the magnetic axis. With the stars considered in this paper, we conclude that the polarization of the modes present in roAp stars are quasi linearly polarized

    Experimental aerodynamic characteristics of vehicles traveling in tubes

    Get PDF
    A simplified theoretical model for a vehicle traveling through an unvented tube under equilibrium incompressible conditions was used to guide the test program, reduce the data, and determine the self-consistency of the results. The results were then used to establish values for the arbitrary coefficients in the theoretical model. Substantial progress was made in understanding the aerodynamic characteristics of vehicles traveling in tubes as exemplified by the good agreement of the theoretical model predictions with the experimental data throughout the Reynolds number range (three orders of magnitude, up to that for an actual full-scale system) and the many geometric variables tested

    A review of aerodynamic noise from propellers, rotors, and lift fans

    Get PDF
    Hand calculation procedures for predicting aerodynamic noise from propellers, rotors, and lift fan

    HD 97394: a magnetic Ap star with high cerium overabundance

    Get PDF
    We report a spectroscopic analysis of the chemically peculiar Ap star HD 97394. The stellar spectrum is rich in lines of rare earth elements with large overabundances, especially cerium, gadolinium and europium. Enhancement of the abundances of these rare earths shows this star to be one of the most peculiar stars. Very large overabundances were found for lines of Ce iii and Eu iii. Abundances obtained from second ionization lines of Nd, Ce and Eu are about 2 dex higher than for those of the first ionization. From partially split Zeeman components of the Fe ii 6149.258 Å line and from synthetic modelling, a global magnetic field of 3.1 kG was measured. We tested for pulsation of the star with high time resolution spectroscopy obtained with the ESO Very Large Telescope. We place an upper limit to any pulsation amplitude of 30–40 m s−1 for individual lines of rare earth elements, of 10–20 m s−1 for the combination of several lines, and of 6–10 m s−1 for cross-correlation over large spectral bands

    New measurements of magnetic fields of roAp stars with FORS1 at the VLT

    Full text link
    Magnetic fields play a key role in the pulsations of rapidly oscillating Ap (roAp) stars since they are a necessary ingredient of all pulsation excitation mechanisms proposed so far. This implies that the proper understanding of the seismological behaviour of the roAp stars requires knowledge of their magnetic fields. However, the magnetic fields of the roAp stars are not well studied. Here we present new results of measurements of the mean longitudinal field of 14 roAp stars obtained from low resolution spectropolarimetry with FORS1 at the VLT.Comment: 5 pages, accepted for publication in A&
    • …
    corecore