
A Quantitative Non-radial Oscillation Model for the Subpulses in

PSR B0943+10

R. Rosen & J. Christopher Clemens

Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC

27599-3255

rrosen@physics.unc.edu, clemens@physics.unc.edu

ABSTRACT

In this paper, we analyze time series measurements of PSR B0943+10 and fit

them with a non-radial oscillation model. The model we apply was first developed

for total intensity measurements in an earlier paper, and expanded to encompass

linear polarization in a companion paper to this one. We use PSR B0943+10

for the initial tests of our model because it has a simple geometry, it has been

exhaustively studied in the literature, and its behavior is well-documented. As

prelude to quantitative fitting, we have reanalyzed previously published archival

data of PSR B0943+10 and uncovered subtle but significant behavior that is

difficult to explain in the framework of the drifting spark model. Our fits of

a non-radial oscillation model are able to successfully reproduce the observed

behavior in this pulsar.

Subject headings: pulsars:individual:PSR B0943+10–pulsars:general—pulsars:polarization—

stars:neutron— stars:oscillations

1. Introduction

The regular subpulse behavior and simple morphology of PSR B0943+10 have made this

pulsar a fiducial for testing pulsar models, especially those models that incorporate drifting

subpulses. Most drifting subpulse models are based on a generic model proposed by Ruder-

man & Sutherland (1975). They hypothesized that a vacuum gap forms above the surface of

the magnetic polar cap and along the co-rotating magnetosphere. This vacuum gap results

from the depletion of charge due to particle emission from the star. Because the vacuum

gap cannot grow indefinitely, sparks discharge across the gap between the magnetosphere

and the stellar surface. These spark regions are fixed in relation to each other. Because they
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occur in the region of the magnetosphere that does not co-rotate with the star, the sparks

rotate around the magnetic pole at a period incommensurate with the spin period of the

star. In this model, the drifting subpulses are the observable manifestation of the rotating

sparks. The drifting (or rotating) spark model, as it is commonly known, is the foundation

for many current pulsar models (Komesaroff 1970; Backer 1976).

In contrast to the drifting spark model, we have proposed a non-radial pulsation model

to explain not only drifting subpulses in pulsars, but also a wide range of other pulsar

behavior (Clemens & Rosen 2004, 2007). Pulsations are a widely observed phenomenon in

normal stars and in compact objects; white dwarf stars, rapidly oscillating AP stars, delta

Scuti stars, and even our sun are known to have oscillation modes. Non-radial oscillations

were previously proposed as an explanation for drifting subpulses (Gold 1968; van Horn 1980;

Strohmayer 1992) but no phenomenological model has been developed to explain the range of

behavior seen in pulsars with drifting subpulses. Our non-radial oscillation model was in its

preliminary stages when Edwards, Stappers, & van Leeuwen (2003) published their analysis

of PSR B0320+39, shown in left panel of Figure 1. The phase behavior of the subpulses

in the data they presented suggested that the modulations we see are a combination of

two different manifestations of non-radial oscillations: time-like variations and nodal lines

sweeping past our sightline.

In non-radial oscillations, a nodal line is a boundary of zero (modulated) emission that

separates two regions of opposite phase. The changing pulsation phase associated with

rotating nodal structure is familiar from studies of rapidly oscillating AP stars. For example,

the rapidly oscillating AP star HR 3831 shows phase changes associated with rotation because

it has a pulsation axis aligned to the magnetic axis of the star but misaligned to the rotation

axis. The right panel in Figure 1 shows pulsational phase changes in HR 3831 as the star’s

rotation carries a nodal line around the star. Compare this to the phase behavior of the

subpulses in PSR B0320+39 in the left panel. PSR B0320+39 has a minimum in the subpulse

amplitude envelope that corresponds to a 180◦ shift in the phase, as expected for a nodal line

and as seen in HR 3831. Edwards (2004) has since published more complex observed phase

behaviors that are challenging both to drifting spark models and pulsation models. We will

defer the analysis of these more complex behaviors until our model has been demonstrated

on a simple case, PSR B0943+10.
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Fig. 1.— Left panel: The average pulse shape, subpulse amplitude (top panel), and phase

(lower panel) of PSR B0320+39 (Edwards et al. 2003). The subpulse amplitude envelope

shows a minimum near zero at the same longitude as a 180◦ shift in the phase. A 60◦/◦ slope

has been removed from the phases. Right panel: The oscillation phase versus magnetic

rotation phase for rapidly oscillating AP star HR 3831 (Kurtz, Shibahashi, & Goode 1990).
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Because it has simple subpulse phase behavior, PSR B0943+10 is an ideal candidate

for testing our model. It has a simple average pulse shape and a single subpulse frequency.

It has been interpreted previously in the context of the drifting spark model (Deshpande &

Rankin 2001), and in this paper we use the same data (Suleymanova et al. 1998) to fit PSR

B0943+10 quantitatively using our non-radial oscillation model. As a prelude to fitting the

data, we conducted an independent analysis. In this process, we found significant behavior

not mentioned in previous publications and challenging to explain with any model. This

behavior includes a splitting in the subpulse frequency and a bifurcation of the driftband

in only part of the pulse profile. Detecting these behaviors requires Fourier transforms

with higher frequency resolution and driftband plots with finer amplitude resolution than

previously published for this data set.

Time series analysis of PSR B0943+10 is difficult because of a large, apparently-stochastic

pulse amplitude distribution that is intrinsic to the star and not due to instrumental noise.

It is possible to filter this in Fourier space as Edwards & Stappers (2002) have implemented,

but this may alter the data in the time domain in ways that are not intuitive. Because most

of the previous analysis of PSR B0943+10 was conducted in the time domain (Deshpande

& Rankin 2001); we have chosen to do the same. It would be a profitable exercise, but

beyond the scope of this paper, to repeat the analysis using the techniques of Edwards &

Stappers (2002). To conduct our fitting in the time domain, we have normalized the pulses

as described in §4.1. The normalization process prevents our fit from being dominated by

stochastic amplitude variations but also removes any useful information that might be carried

by pulse amplitudes. We are careful throughout this paper to distinguish between presenta-

tions of raw data and data that have been normalized. In §3, the data analysis section, for

instance, we present plots based only on data without any alteration.

Our work in this paper is organized as follows: We present a detailed summary of

the model we will fit in §2. We then analyze the 430 MHz data of PSR B0943+10 in §3,

highlighting differences in our analysis to those of Deshpande & Rankin (2001). We then

fit normalized data in the time domain to our pulsational model using Gaussfit, a robust

least-squares approximation package in §4. Using Gaussfit we are able to fit quantitative

values for all of the relevant parameters in our model. We find that the parameters can

be separated into geometrical and pulsational parameters and the geometrical parameters

are mostly independent from the pulsational parameters. To test the quality of our fits we

produce simulated data and fitted parameters and compare them to the data in §5. Our

model successfully reproduces the essential features of PSR B0943+10. In §6, we discuss the

results of our fit and the comparison of our model to data.
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2. Our Non-Radial Oscillation Model

In Clemens & Rosen (2004) we introduced a oblique pulsator model (Kurtz 1982) of

high spherical degree (`) to explain the phenomena of drifting subpulses in radio pulsars.

Originally, this model only attempted to reproduce the behavior of the total intensity (Stokes

I) of pulsars. In our companion paper (Clemens & Rosen 2007), we expanded this model to

encompass linear polarization by introducing two orthogonal polarization modes associated

with pulsations. The first of these orthogonal polarization modes is modulated by pulsational

displacements. These displacements have a transverse electric field vector that points toward

the magnetic pole and follows the single vector model of Radhakrishnan & Cooke (1969).

We refer to this radiation as the “displacement polarization mode” and express the time

dependent amplitude of this radiation as the positive portion of the function:

ADPM(t) = a0DPM
+ a1DPM

Ψl,m=0(θmag) cos(ωt− ψ0 − ψdelay)) (1)

where Ψl,m=0 is a spherical harmonic of high ` and m = 0. The variable θmag refers to the

magnetic co-latitude, because the pulsations in our model are aligned to the magnetic pole.

The amplitudes a0DPM
and a1DPM

are to be fitted to the data.

The pulsational displacements and their associated velocities move toward and away

from the magnetic pole. Thus, the induced electric field as a result of the velocities ( ~E =

~v × ~B) is naturally orthogonal to the Radhakrishnan and Cooke vector. We connect this

induced electric field to the second orthogonal polarization mode which we refer to as the

“velocity polarization mode”. Mathematically, we express the velocity polarization mode as

a time-varying amplitude:

AV PM(t) = a0V PM

∂Ψl,m=0

∂θmag
sin(ωt− ψ0), (2)

which incorporates the time derivative and the θmag derivative of Equation 1, as appropriate

for horizontal pulsation velocities. This equation is analogous to the Vθ in equation three of

Dziembowski (1977).

To convert the amplitudes in Equations 1 and 2 into quantities that can be directly com-

parable to observations, we use the following transformations to calculate Stokes parameters

in the frame of the star:

I =< ADPM >2 + < AV PM >2 (3)
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Q′ =< ADPM >2 − < AV PM >2 (4)

U ′ = 0 (5)

We have followed Deshpande & Rankin (2001) in their use of prime notation to indicate

measurements in the non-rotating frame of the star. Translating from the primed quantities

into the observer’s frame requires incorporating the changing longitude we observe as the

star spins and imposing rotation of the polarization angle so that the polarization of the

displacement polarization mode follows the changing direction of the magnetic pole, given

as:

χmodel = χo + tan−1 sin(α) sin(φ− φo)
sin(α + β) cos(α)− cos(α + β) sin(α) cos(φ− φo)

(6)

Because the total linear polarization does not change with the frame of reference:

L =
√
Q′2 + U ′2 =

√
Q2 + U2 (7)

then Q′ and U ′ can be rotated into Q and U using the following transformation:

Q = L cos(2χmodel) (8)

U = L sin(2χmodel) (9)

And we have to make the rotational longitude, φ, and the magnetic co-latitude, θmag, func-

tions of time as follows:

φ =
t− t(φo)

P1

360 (10)

θmag = cos−1(sin(α) cos(φ− φo) sin(α + β) + cos(α) cos(α + β)) (11)
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2.1. The Observed Pulse Window

Our model treats the pulsations as global oscillation modes of the neutron star, which

means that they can modulate emission coming from any location on the star. However,

pulsars are observed to emit radiation only from the region surrounding the magnetic poles.

The theoretical explanation for this is generally framed around the Goldreich & Julian (1969)

aligned rotator model, in which charged particles can escape only from the polar regions.

In order to make quantitative comparisons between our model and observations, we have

to impose an emission “window”, analogous to the observed “pulse window”, that is separate

from the pulsation model and limits the effects of pulsations to the regions that are observed

to emit. For this purpose we have imposed upon I, Q, and U a “window function” that

is zero in those portions of the pulsar spin when the star is off, and is a Gaussian function

with a maximum of unity in the emitting region. Observations show that this window is

not necessarily centered on the longitude of the magnetic pole (Johnston et al. 2005). The

window we use has a maximum (φmean) and a width (σ) equal to the best Gaussian fit to

the average pulse shape. In all of the presentations of data that follow, zero in longitude

refers to the center of this window rather than φo, the longitude of the magnetic pole.

3. Data Analysis of PSR B0943+10

In this section we discuss our analysis of archival data of PSR B0943+10. We highlight

features in the data not mentioned in Deshpande & Rankin (2001). These include a small

change in the subpulse frequency, a splitting in the driftband, and effects of the stochastic

pulse height distribution. Most significantly, Deshpande & Rankin (2001) detect a modula-

tion of the subpulses in a small portion of the data that bolsters support for their drifting

spark model. We will show in this section that the amplitude modulation, while present in

that specific subsection of the data, is probably the result of the large stochastic pulse am-

plitude variations intrinsic to the pulsar. These amplitude variations make the data difficult

to model and in a subsequent section, §4.1, we will discuss our strategy for circumventing

these problems.
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Fig. 2.— Single pulses of PSR B0943+10, showing only the central 20◦ of longitude. The

pulses are stacked at P1 = 1.097608 seconds, the spin period of the pulsar. The spacing

between subpulses, P2, is about 31.78 milliseconds. P3 is identified by the Fourier transform,

as calculated by Deshpande & Rankin (2001).
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The 430 MHz data of PSR B0943+10 that we examine in this paper are the same data

analyzed by Deshpande & Rankin (2001) and include 986 pulses in all four Stokes parameters,

sampled synchronously with the period of the star, P1 = 1.097608 seconds, in millisecond

increments. Therefore, each pulse sample contains 0.1559 seconds of measurements, corre-

sponding to 50◦ of longitude. Of this, we designate a pulse window of about 20◦, and the

remaining portion of the sample is considered off-pulse, instrumental noise. Figure 2 shows

a plot of the central 20◦ of single pulses of PSR B0943+10. The pulses clearly drift through

the pulse window. Each pulse sample is not contiguous with the adjacent pulses, and there

are not an integer number of time intervals, δt, between each pulse. Our analyses and that

of Deshpande & Rankin (2001) assume the signal from the pulsar is zero during the offpulse

portion, but this is not shown in Figure 2. Figure 2 illustrates the important periods in pul-

sar terminology: P1, the spin period of the pulsar, the time between pulses, and the period

at which the data are folded in Figure 2; and P2, the spacing between adjacent subpulses.

P3 is ordinarily the length of time for a subpulse to return to a given longitude, but we

have followed Deshpande & Rankin (2001) and used P3 from the lowest alias of P2 in the

Fourier transform, specifically P3 = 1.867P1.

The data were originally acquired by Suleymanova et al. (1998) who describe the

observing setup. The subpulses appear in their steady, highly organized bright “B”-mode

state for the first 816 pulses, where the spacing between the subpulses, P2, is about 31.78

milliseconds. The remaining 170 pulses are disorganized with generally lower amplitude and

the pulsar is considered to be in its “Q”-mode (“quiescent”) state. We do not present a

full repetition of the analysis of Deshpande & Rankin (2001), nor do we apply all of their

analysis techniques, e.g. folding the data at 20P3, where P3 (1.866P1) is the length of time

for a subpulse to return to a given longitude. Instead, we refer to the reader to their paper

for most of the data analysis, except for those instances where we find significant behavior

of the star not shown in their analysis.

Deshpande & Rankin (2001) use four basic tools in their analysis: synchronous folding

of the data, the Fourier transform, the longitude resolved fluctuation spectrum, and the

harmonic resolved fluctuation spectrum. When synchronously folding the data at a given

period, usually P3, the subpulses drift through the pulse window at each successive spin until

they repeat in longitude, thus creating a driftband plot. For example, Deshpande & Rankin

(2001) fold the data at 1.867P1 (=P3) and at 37.346P1 (=20P3), in their figures 8 and 9,

respectively. The longitude resolved fluctuation spectrum, first introduced by Backer (1973),

is a Fourier transform calculated at each longitude. The harmonic resolved fluctuation

spectrum is a Fourier transform of the time series stacked at the spin frequency. Edwards

& Stappers (2002) have shown that the combination of the longitude and harmonic resolved

fluctuation spectra present the same information as a two-dimensional Fourier spectrum.
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While we have also calculated the two-dimensional Fourier spectrum, we do not present it

here because it is less familiar and not directly comparable to the analysis of Deshpande &

Rankin (2001).
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Fig. 3.— The light curve of PSR B0943+10 (top panel) showing large pulse-to-pulse varia-

tions in amplitude. The lower panel shows the pulse height distribution for the data in the

top panel.
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The most difficult aspect of modeling PSR B0943+10 is the large stochastic variation

in the pulse amplitudes. The average signal-to-noise of an integrated pulse is 4.93, where

we used the off-pulse instrumental noise as the noise estimate. The standard deviation of

the onpulse data average to be 7.13 of the standard deviation of the noise, but varies from

1.23 to 109.87. From this, we conclude the large variations in pulse height, as shown by the

pulse height distribution given in Figure 3, are due to stochastic variations of the pulsar, not

instrumental noise. Indeed, Cordes (1978) has argued that pulsar subpulses are amplitude

modulation of shot noise-like emission. Our analysis of the data in this section is tempered

by the possible effects of the stochastic variation, but we do not attempt to remove this

variation by any normalization process until §4.

3.1. Driftbands

We begin our analysis by folding the data at P3, a technique used by Deshpande &

Rankin (2001) to show changes in the shape of individual subpulses as a function of longitude.

Deshpande & Rankin (2001) remove an “aperiodically fluctuating base” prior to presenting

their data. They do not describe their method for removing this base in enough detail for us

to reproduce it. We have decided to present the unaltered data which may not be exactly

the same as in their presentation.

Our driftband plots in Figure 4 show broadening, or even splitting, on the right-hand-

side of the profile that is not evident in the lower resolution plot in Deshpande & Rankin

(2001). To explore this, we folded shorter 100-pulse segments of the data at P3, and noticed

an obvious splitting on the right side of driftband as shown in the left panel of Figure 4.

While we only show the first 100 pulses here, driftbands of other 100-pulse segments of

the data also display splittings on the right-hand-side of the driftband. The washed out

appearance of the split in the driftband in the full data set (right panel in Figure 4) is a

result of the drifting in the subpulse frequency, which we will discuss in §3.2.
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Fig. 4.— Left panel: The first 100 pulses of PSR B0943+10 folded at P3 = 1.86598P1 sec-

onds. The value of P3 was calculated based on the value of P2 = 31.7816 milliseconds, taken

from the Fourier transform of the entire 816 pulses, and using equation 4 from Clemens &

Rosen (2004) ( 1
P3

= 1
Ptime

− n
P1

, where nPtime ≈ P1). Right panel: All 816 pulses folded at

the same value of P3. The amplitude of the greyscale is in mJy.
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The splitting in the driftband is difficult to explain because it is a longitude-dependent

phenomenon. In the model of Deshpande & Rankin (2001) in particular, there is a pattern

of 20 sub-beams circling the magnetic pole. In each successive spin of the star, an individual

sub-beam moves a few degrees earlier in longitude. This means the same sub-beam as seen

on the right side of the pulse window will, in the next spin of the star, have moved to the

left side. The splitting in the driftband indicates that all sub-beams must be split when

they are present on the right side of the pulse window and that they recombine when they

move to the left side. This behavior is difficult to explain with the rotating spark model

without the multiplication of new quantities, but we will show it is a natural result of the

phase difference between the displacement and velocity polarization modes in our model.

3.2. Fourier Transform

The Fourier transform is an indispensable tool for finding frequencies in noisy data.

Deshpande & Rankin (2001) use a Fast Fourier Transform to determine the subpulse fre-

quency, but they do not calculate a fully-resolved transform of all 816 pulses analyzed in

their paper. Instead they calculate Fast Fourier Transforms of 256-pulse sections and average

them. This prevents them from seeing fine structure in the subpulse frequency that is only

visible at high resolution. We will show that our resolved Fourier transform of the entire

816 pulses shows splitting in the subpulse frequency. This splitting is not the same as the

sidelobes uncovered by Deshpande & Rankin (2001); this spacing is significantly smaller and

does not have the obvious symmetry to be sidelobes due to an amplitude modulation. Our

analysis will show that it is impossible with the limited data to determine whether the two

largest peaks are two closely-spaced, independent frequencies or the result of instabilities of

the subpulse frequency. The presence of two independent frequencies would be a significant

complication for the drifting spark model but would convey asteroseismological information

if the variations are non-radial oscillations. Additional data is necessary for a definitive

identification of frequency splitting.
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Fig. 5.— A fully-resolved Fourier transform of all 816 pulses. Panel (A) shows the transform

up through the first 60 harmonics. Each successive panel enlarges the area of the transform,

eventually focusing on the subpulse frequency in panel (D). The subpulse frequency is split

into several peaks; the largest two are labeled. The spacing between the two labeled peaks is

about three times greater than the resolution of the Fourier transform. For reference, panel

(E) is the Fourier transform on a synthetic single-frequency sine wave sampled the same as

the data.
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To compute our Fourier transforms we use a tool written by Carl Hansen for the Whole

Earth Telescope (Nather et al. 1990). It is optimized for discrete, contiguous chunks of

data with gaps in between. Unlike the Fast Fourier Transform, this tool does not require an

integer number of time intervals, δt, between the chunks and is therefore appropriate for the

data from PSR B0943+10. Like the Fast Fourier Transform, this tool assumes zeros between

chunks of data, but as a discrete Fourier transform, it does not require 2n datapoints or a

resampling the data into equally spaced time bins. The bottom panel (A) of Figure 5 shows

the Fourier transform up through the 60th harmonic of all 816 pulses of PSR B0943+10,

increasing the resolution by a factor of approximately three over a Fourier transform using

only 256 pulses. A closer inspection of the subpulse frequency in the top panel (D) of Figure

5 shows that the peak is split into several peaks, and the largest four are all statistically

significant. For reference, panel (E) of Figure 5 shows a window function which is the Fourier

transform of a synthetic single-frequency sine wave sampled as the data.

The peaks in panel (D) are representative of all the aliased subpulse peaks. The larger

of the two largest peaks (peak 2) is at 31.4647 Hz (P2 = 31.7816 milliseconds), which is not

the largest subpulse alias in panel (A). We have chosen this subpulse alias as the subpulse

frequency because this alias shows an integer relation to the second and third harmonics

which are not shown in Figure 5. The location of the smaller peak (peak 1) is at 31.4618

Hz (P2 = 31.7846 milliseconds); the difference in the two peaks is 0.0029 Hz. This difference

in frequency would be barely visible in a 256-pulse Fourier transform, especially if several

transforms were averaged together which could broaden the subpulse frequency.

To explore frequency and phase stability of the subpulses, we divided the data into

sequential 50-pulse segments, where the number of pulses in each segment (50) was chosen

arbitrarily. Since we were fitting only the subpulses in the pulse window, we needed enough

pulses that the subpulse frequency could be accurately fit. The upper limit on our segment

length was determined by attempting to minimize the amount of the frequency wander and

having enough data segments to determine any trends.

Fourier transforms of these smaller subsets of data can still clearly show the subpulse

frequency, but they do not have the frequency resolution to separate the subpulse into the

distinct peaks seen in the fully-resolved Fourier transform. We used Gaussfit 1, a robust

least-squares approximation package, to fit the intensities (Stokes I) in each of the of 50-

pulse segments to a periodic function. Because the variance in the data is much higher than

the off-pulse instrumental noise, we use the variance as an error estimate. This artificially

forces the reduced χ2 to be near one, so we have no absolute measure of the goodness of our

1http://clyde.as.utexas.edu/Software.html
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fits.

We cannot use a sine wave alone for this fit because its mean would be zero and our data

are all positive. Removing the mean from the data, which would be the normal procedure

for studying pulsations, does not help in this case because of the large amplitude variations.

Thus we have used for our fit the positive portion of our function I = A cos(2πt
P2
− ψ). This

yields good convergence from Gaussfit and permits us to measure the period and phase in

each segment of the data. We have plotted the period and amplitude as a function of data

segment in the left panels of Figure 6.

In Clemens & Rosen (2004), we pointed out that P2 originally defined as the time

between adjacent subpulses in a driftband, may not be a good estimate of the underlying pure

subpulse frequency in our pulsation models. Consequently we called subpulse period Ptime.

Edwards (2006) has pointed out that the amplitude windowing which distorts measurements

of P2 in individual pulses does not affect measurements that rely on subpulse phase. In this

paper, all of our measurements of P2 are either from Fourier transforms or linear fits using

pure sine waves, which means our estimate of P2 is a good measurement of Ptime and we

are using the more familiar notation of P2 for the measured subpulse period.

Our analysis of the smaller data segments reveals that at low resolution, P2 wanders

over the entire run. The change in P2 with subset is shown in the bottom left panel of

Figure 6 and the corresponding amplitudes (A) are shown in the top left panel. As shown

in Figure 5, the fully-resolved Fourier transform shows several distinct peaks. Each subset

in Figure 6 is not long enough to resolve these peaks individually, instead they appear to be

a single peak with its maximum determined by the relative sizes of the unresolved peaks,

causing the wander in P2. This single peak is large compared to the noise and therefore

Gaussfit is able to fit it very accurately, resulting in the extremely small error bars in Figure

6. The width of the peak, however, is determined by the length of the time series and is

larger than the error of the fit.

The pattern in the period change is more complex than we would expect from a pure

frequency splitting, which would generate a regular pattern of period changes. We can

explore things further by examining the subpulse phase. If the subpulse frequency were

solely amplitude modulated we would expect symmetric sidelobes in the Fourier transform

and our least squares fit using a fixed frequency would show a stable subpulse phase. If the

subpulse is actually two closely-spaced frequencies, a fit with a fixed frequency would result

in a periodic change in the subpulse phase.
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Fig. 6.— Left panels: The results of fitting consecutive 50-pulse segments of the data with

the positive portion of the function I = A cos(2πt
P2
− ψ). Top left panel: The fitted value

of the amplitude for each 50-pulse segment. Bottom left panel: The corresponding fitted

period for each 50-pulse segment. Right panels: The results of fitting a single sine wave with

fixed subpulse period, P2, to consecutive 50-pulse segments of the data. Top right panel:

The fitted value of the amplitude for each 50-pulse segments using Gaussfit. Bottom right

panel: The corresponding fitted phase for each 50-pulse segments in radians. The error bars

are not included because the errors are sufficiently small that they are not visible within the

resolution of the plot.
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To examine the phase behavior, we averaged the subpulse frequencies in the bottom

left panel of Figure 6 and then fit each of the 50-pulse subsets with Gaussfit with the

same positive portion of the function I = A cos(2πt
P2
− ψ), but with fixed P2 = 31.7818

milliseconds. The resulting phase as a function of time is shown in the bottom right panel

of Figure 6 and the corresponding amplitudes are in the top panel. Because it appears

that the subpulse frequency and phase wander through only one or two cycles, we would

require a longer data stream to conclusively determine whether more than one frequency is

present. The amplitudes of the phase variations appears to increase with pulse number. Our

data terminates with a transition from the stable “B”-mode to the disordered “Q”-mode,

where the fits in the section were confined to the 816 pulses in the “B”-mode. Whether

the transition into a disordered state is related to the increase in size of subpulse phase and

period variations is a also question requiring more data.

3.3. Longitude and Harmonic Resolved Fluctuation Spectra

Stochastic variation in the pulse amplitudes complicate attempts to extract any under-

lying signal for comparison to our model. While stochastic variation averages away in the

driftbands and Fourier transforms of large segments of the data, in short sections the proba-

bility is greater that large stochastic variations can mimic an amplitude modulation. Within

this data set, Deshpande & Rankin (2001) have detected a periodic amplitude modulation

in the region of pulses 129-384 of the data. This periodic amplitude modulation manifests

itself as sidelobes around the lowest alias of the subpulse frequency in the longitude resolved

fluctuations spectra; these sidelobes are distinctly different that the peaks discussed in §3.2

and shown in Figure 6. The amplitude modulation is a key component for increasing their

confidence in the circulating spark model; Deshpande & Rankin (2001) interpret it as a per-

sistent pattern of sub-beam brightness. They view it as confirming the existence of twenty

distinct sub-beams. A single-mode pulsational model like ours cannot reproduce either the

stochastic variations in the pulse height or the amplitude modulation that produces the side-

lobes. However, it is legitimate to ask whether the appearance of symmetric sidelobes in a

subset of the data is not consistent with stochastic amplitude variations alone, rather than

indicative of a periodicity in the star that should be fitted by models.

The amplitude modulation interpreted by Deshpande & Rankin (2001) can be seen in

the longitude and harmonic resolved fluctuation spectra of pulses 129-384 in the left panels

of Figures 7 and 8. In Figure 7, the aliased subpulse frequency is reflected about the Nyquist

frequency and appears at about 0.43 Hz. As the panel on the left shows, the subpulse

signal has sidelobes indicative of amplitude modulation with a period of just over 37P1.
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The difference in our longitude resolved fluctuation spectrum (left panel of Figure 7 and

that of Deshpande & Rankin (2001) (their figure 7) is likely due to their removal of the

aperiodically fluctuating base, which we do not remove. In Figure 8, the aliased subpulse

frequency is at its true value of 0.49 Hz and shows no significant sidelobe structure. Visual

inspection of the harmonic resolved fluctuation spectrum in figure 4 of Deshpande & Rankin

(2001) does not show evidence of sidelobes, nor do we see them in our harmonic resolved

fluctuation spectrum of the entire 816 pulses. The sidelobes are also not present in the other

sections of the data, neither in the longitude or harmonic resolved fluctuation spectrum. For

comparison, we show the next 256 pulses (pulses 384-640) in the right panels of Figures 7

and 8.
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Fig. 7.— The longitude resolved fluctuation spectrum for two consecutive 256-pulse segments

of the data from PSR B0943+10. Left panel: The subsection of the data (pulses 129-384)

where Deshpande & Rankin (2001) discovered the tertiary modulation that supports the

rotating spark model. Right panel: The longitude resolved fluctuation spectrum for the

next portion of the data (pulses 385-640); the tertiary modulation is not present. The

contour levels are in mJy2.
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Fig. 8.— The harmonic resolved fluctuation spectrum for the same two consecutive 256-pulse

segments of the data from PSR B0943+10 as in Figure 7. Left panel: The subsection of the

data (pulses 129-384) where Deshpande & Rankin (2001) discovered the tertiary modulation.

Right panel: The harmonic resolved fluctuation spectrum for the next portion of the data

(pulses 385-640). The contour levels are in mJy2.
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In favor of the significance of amplitude modulated sidelobes, Monte Carlo simulations

in which we shuffled the amplitudes in pulses 129-384 of the data showed a very low prob-

ability (less that 1%) that two peaks of the size seen in the longitude resolved fluctuation

spectra would occur by chance. However, the probability that an amplitude modulation

could appear in the longitude resolved fluctuation spectrum and be masked by noise in the

harmonic resolved fluctuation spectrum is equally small. The sidelobes do not appear in the

harmonic resolved fluctuation spectrum neither in our plots nor in the plots of Deshpande

& Rankin (2001). There are a number of other reasons to suspect that it is something other

than a pure amplitude modulation. Based on the models of the drifting carousel pattern of

sparks, Edwards & Stappers (2002) show that an amplitude modulation caused by a persis-

tent patterns in the subpulses ought to appear as a sidelobe of the DC component at zero

frequency. In the same section of the data, it does not appear as a low frequency sidelobe. It

is also not present in any of the other independent 256-pulse samples nor has it reappeared

in subsequent data.

Clearly it is of the highest importance to establish whether periodic amplitude modu-

lation occurs in the drifting subpulses. It would be the strongest evidence in favor of the

drifting subpulse model and against the model we present here. Its appearance in a single

section of the data, like the appearance of frequency splitting and phase wandering in the

subpulses, needs to be addressed with additional data before we can assess its consequences

for our model.

4. Model Fitting and Simulations

Departing now from new phenomena uncovered by our analysis, we address the central

question of this work, which is whether or not our pulsational model can reproduce the stable

features of the observations. We will address this question by first attempting to fit the data

using our pulsational model. The purpose of the fitting is to select objective quantities for

the model variables. Once we have completed the fitting, we will use the fitted parameters

to generate synthetic pulsar lightcurves and see how well they reproduce the features of the

drifting subpulses. As we will see, the best fits to our model generate synthetic data that

reproduces the driftbands with splitting, the polarization properties shown in Figure 9, and

the essential features of the harmonic and longitude-resolved fluctuation spectra.
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Fig. 9.— Top panel: Average intensity (solid line), linear polarization (dashed line), and cir-

cular polarization (dotted line) for PSR B0943+10 at 430 MHz. Bottom panel: Polarization

angle histogram of the same data.
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4.1. Fitting Strategy

Before we can apply our general model to a specific star like PSR B0943+10, we must

first determine whether orthogonal polarization mode emission is present in the star and

whether the emission polarization angles are consistent with the single vector model of Rad-

hakrishnan & Cooke (1969). Figure 9 shows a histogram of the distribution of polarization

angles in individual subpulses as first introduced by Stinebring et al. (1984a, 1984b). At

each longitude it counts how many individual pulses show polarization angles in each bin.

The polarization angles clearly group around two parallel polarization tracks. These tracks

are only gently curved indicating that our sightline misses the magnetic pole so that the

entire pulse samples a small range of magnetic longitude.

We have identified the stronger track with the displacement polarization mode of our

model and the weaker track with the velocity polarization mode because the reverse identi-

fication did not yield acceptable fits. Inspection of the lower panel of Figure 9 suggests that

the amplitude coefficient for the displacement polarization mode must be larger than the

velocity polarization mode, i.e. the displacement polarization mode is the dominant mode

in this star. By convention, we would call this the primary polarization mode but we want

to avoid attaching the displacement polarization mode to the primary polarization because

it is not clear that the displacement polarization mode will dominate in every pulsar.

We can fit the rotation axis inclination, α, and impact parameter, β, using these po-

larization angle swings but the fits are ambiguous, yielding only the ratio of α to β. We

will discuss our results for these parameters in §4.2. Deshpande & Rankin (2001) apply

external information to constrain α independently and for consistency we have chosen val-

ues of α near theirs. The only pulsational parameter that interacts with these (α, β) is

the spherical harmonic degree ` because the positions of the nodal lines that encircle the

magnetic pole are related `, and the path our sightline threads through these nodal lines is

related to β. Figure 10 is a scan of the spherical harmonic along a single magnetic longitude

and shows the location of nodal lines for a particular ` (`=75) and various choices of the

impact parameter β. Using only the data on PSR B0943+10 analyzed in this paper, there is

no way for us to know which nodal region our sightline passes through nor is there anyway

to constrain ` that is independent of β. In most emission models, the divergence of the

dipole field magnifies the structure at the stellar surface so the apparent ` we fit represents

a surface ` approximately seven times higher, as we explained in Clemens & Rosen (2004).

Without a more complete model of emission, all information about the size of ` is surrogate

information and can never be interpreted asteroseismologically.



– 26 –

0 −1 −2 −3 −4 −5 −6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β in degrees

A
m

pl
itu

de

       Core
phase: positive

First conal region
phase: negative

Second conal region
   phase: positive

       Core
phase: positive

First conal region
phase: negative

Second conal region
   phase: positive

Fig. 10.— A scan along a single magnetic longitude and shows the location of nodal lines

for a particular ` (`=75) for various choices of the impact parameter β. The magnetic pole

is at β = 0◦, the nodes are at about −1.8◦ and −4.1◦, and the antinodes are at −2.9◦ and

−5.2◦. The circles indicate values of β explored in our fits to the pulsation model.
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Fitting the other pulsational parameters – amplitudes, periods, and phases – requires

that we minimize an appropriate metric for the mismatch between the measured Stokes

parameters and the model Stokes parameters. This is complicated by the lack of circular

polarization in our model but its presence in the star. The measured circular polarization,

while not as strong as the linear polarization, does contribute to the intensity in each pulse

and may or may not follow the shape of the pulse profile. Since we are only modeling the

total and linear intensity, we remove the measured V from the measured I by constructing

the Stokes parameter Inew =
√
I2 − V 2 for each pulse. Otherwise we ignore the measured

Stokes parameter V .

A further complication arises from the appearance in the data of polarization vector

changes. In our model, the displacement and velocity polarization modes are orthogonal

polarization states, which allows them to be described by a single Stokes parameter, e.g.

Q, and leaves the other Stokes parameter zero. Deshpande & Rankin (2001) have shown

that removal of the Radhakrishnan and Cooke vector rotation from the PSR B0943+10

data moves all of the subpulse behavior to one Stokes parameter, which they call Q′, and

leaves only noise in the Stokes parameter U ′, further confirming that the variations of PSR

B0943+10 come from the superposition of orthogonal polarization modes. We have adopted

the notation of Deshpande & Rankin (2001) and refer to the Stokes parameters calculated by

our model before the incorporation of any vector rotation as primed quantities. This gives us

the option to conduct our fits in either the observed Stokes parameters (unprimed space) or

in the frame of the star where the theoretical values are calculated (primed space). We have

chosen to do the fitting in observational (unprimed) space because it does not require any

further alteration to the data. All the fits we will present are the result of the simultaneous

minimization of Imodel−Inew, Qmodel−Qdata, and Umodel−Udata. The quantities Imodel, Qmodel

and Umodel are calculated using Equations 3, 8, and 9.

The final complication, and the most vexing, is the large, apparently-stochastic, pulse

height variations. To minimize the effects of the pulse height variation on our fits, we have

normalized the data to remove the pulse-to-pulse amplitude variations. To do this, we con-

structed an average pulse shape from the entire data set and normalized it to unit amplitude.

We then normalized each individual pulse in the Stokes parameter I by multiplying each

pulse by a single scale factor. The scale factor was based upon the maximum intensity

in each individual pulse. This maximum does not always occur at the center of the pulse

profile, so we calculated the scale factor for each pulse from the ratio of its maximum to

the average pulse at the same longitude. We treated the linear polarization parameters in

a similar manner by constructing the linear polarization (L =
√
Q2 + U2). We normalized

this quantity to unit amplitude in the same way that was done for I. Then we scaled the

individual pulses in Q and U by the maximum of the linear polarization for that pulse,
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effectively reducing both Q and U by the same normalization factor. This process leaves

the ratio of Q to U the same, thus having no effect on the value of the polarization angle.

Since the instrumental noise is normalized in the same manner as the rest of the pulse, an

amplitude modulation can still be present as the ratio of pulse height to noise is preserved.

However, the normalization process reduces any amplitude modulations while still retaining

the structure in the individual pulses.

Normalization contained in the pulse-to-pulse variations makes the fitting exercise tractable

but removes any information contained in the amplitude variations. Before this normaliza-

tion process, fits to the data did not consistently converge to solutions. Afterward, the fits

are always well-behaved but can no longer yield any astrophysical information about pulse

amplitudes. However, frequency and phase are only minimally affected. We have demon-

strated this by recalculating and examining all of the figures in §3 for the normalized data.

The appearance of the driftbands and longitude and harmonic fluctuation spectrum remain

essentially unchanged.

4.2. Fits to the Polarization Angle

Fits to the polarization angle swing, depicted in Figure 9, require four parameters: α,

β, φo (the rotational longitude of the magnetic pole), and χo (the position angle of the

linear polarization at φo). As we have already mentioned, these parameters cannot be fit

independently. For any given value of α and φo , a corresponding β and χo can be fitted,

and there is no substantial difference in the quality of the fits. However, only one value of

the ratio of α to β yields good fits and we have preserved the best ratio in all of our work.

The fits showed φo and χo are also highly correlated.

Figure 11 shows the Radhakrishnan & Cooke (1969) polarization angle calculated from

Equation 6 superimposed on the polarization angle histogram of the data using the values

shown in Table 1. These values were constrained to keep α near the values given in Desh-

pande & Rankin (2001). Our fit has a different slope than that of Deshpande & Rankin

(2001) which cannot be matched by only adjusting φo. Inspection of Figure 11 shows that

our fit is slightly better than that of Deshpande & Rankin (2001).
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Fit 1 Fit 2 DR2001

β= −2.81◦ β= −5.42◦ β= −4.29◦

α= 8.03◦ α= 15.51◦ α= 11.58◦

φo= 1.45◦ φo= 0.45◦ · · ·
χo= −9.15◦ χo= −6.15◦ · · ·

Table 1: The first two columns are the values of the geometrical parameters for two fits using

Gaussfit (Fit 1 and Fit 2). The last column contains the values used by Deshpande & Rankin

(2001) for α and β.
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Fig. 11.— The polarization angle histogram of all 816 pulses of PSR B0943+10. The lines

represent different values of α, β, φo, and χo. The top line is the polarization angle calculated

from the values determined by Deshpande & Rankin (2001), given in Table 1. The bottom

line is the result of Fits 1 and 2 in Table 1, which are indistinguishable.
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4.3. Fits to the Pulsation Model

Once we have settled upon values for parameters α and β from geometric arguments,

it is straightforward to fit our pulsational model to the data, but we must first choose a value

for `. As we have already discussed, the features we observe in pulsar beams are spatially

magnified, so that value of ` we use is a surrogate for a larger value at the stellar surface. We

can constrain the apparent ` by constraining the allowed pulsar geometry in the model. As

presented by Deshpande & Rankin (2001), the subpulses in PSR B0943+10 drift all the way

across the pulse window without large phase jumps or even driftband curvature, which is

consistent with the identification of this pulsar as a conal signal pulsar (Rankin 1990). In our

model, where the subpulses are generated by a single frequency oscillation, continuous drift

implies that our sightline does not cross a nodal line. If we only allow geometries in which

our sightline passes through one of the first three nodal regions, as plotted in Figure 10, and

if we further exclude the possibility that our sightline passes through the central region of

the star (which would be analogous to the core type classification of Rankin (1990)), then

` is constrained by the absence of nodal lines in the average profile. For this geometry, the

lower and upper bounds on ` are 55 and 125, respectively. We have chosen ` to be in the

mid-range of these bounds, 75, in all the fits that follow. In addition to fixing `, we fix P1 to

be the known period of the pulsar. We choose φo, the closest approach to the magnetic

pole, to be near the center of the average pulse profile based on the observations of the pulse

profile of PSR B0943+10 at other frequencies (Smits et al. 2006).

Once α, β, `, and P1 are fixed, we use the following procedure to fit the remaining

parameters:

• Choose trial values for all the parameters based on observed phases and amplitude

ratios.

• Generate a time series in I, Q, and U in Equations 3, 8, and 9, sampled in the same

way as the data.

• Impose a Gaussian window function on each pulse where the function is g = e−(φ−φmean)2/(2σ)2 ,

where σ ≡ 3.25◦ and φmean ≡ 0◦.

• Calculate the metrics Imodel− Inew, Qmodel−Qdata, and Umodel−Udata and repeat until

they are minimized.

Because our Fourier analysis in §3.2 showed that the frequency and phase of the subpulse

wandered slightly over the 816 pulses, we fit the data in 100-pulse segments. We implement
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the procedure above using Gaussfit. Like our analysis of the multiple peaks near the subpulse

frequency in §3.2, the variance in the data is much higher than the off-pulse instrumental

noise, so we use the variance as an error estimate. This artificially forces the reduced χ2

to be near one, so we have no absolute measure of the goodness of our fits nor will it ever

be possible to do better for this pulsar unless we understand the physics behind the pulse

height distribution.

One other complication in our fit is that our model includes no unpolarized component.

This does not mean that our model radiation remains fully polarized, but rather that any

unpolarized component arises from the superposition of the orthogonal polarization modes,

i.e. if Qmodel and Umodel are equal, we have complete depolarization. Deshpande & Rankin

(2001) have shown, and we concur, that PSR B0943+10 contains a substantial additional

unpolarized component and the absence of this component from our model makes amplitudes

we fit a compromise with reality.

The best results of this fitting process are summarized in Table 2. To be certain the

fitted parameters are not dependent on how our sightline slices through the nodal region,

we repeated these fits for all the values of β shown in Figure 10. We performed a similar

experiment by varying φo. Except for the expected 180◦ difference in phase between the odd

and even nodal regions, the results were the same as we have tabulated, indicating our fit is

robust against changes in geometrical parameters. Because our χ2 is only useful for guiding

us to the best fit and is not able to tell us the likelihood that the data are consistent with

our model, we cannot claim to have confirmed or ruled out a pulsational model. The value

of a quantitative fit is that it allows us to attempt to reproduce the data in an objective

way rather than the subjective attempts in Clemens & Rosen (2004). In the next section we

will show the results of the simulations. Fits to the remaining 100-pulse segments were not

substantially different from the ones shown here.

We find that the fitted parameters can be divided into two categories: pulsational

and geometrical parameters. The pulsational parameters (e.g. the pulsational period, P2,

and the spherical harmonic, Ψl,m=0) describe the surface variations that are centered on

the magnetic pole. The geometrical parameters (e.g. the offset between the rotation and

magnetic axes, α, and the distance between the magnetic pole and our line of sight, β) are

highly correlated and it is their ratios rather than their precise values that are significant

in matching the observations. Therefore, our fits do not yield the full geometry of the

star and external information has to be applied to know, for example, the inclination of

the rotation axis. Fortunately, the geometrical parameters are mostly independent from

the pulsational parameters and thus the degeneracy of the geometric parameters does not

prevent us from constraining the pulsational properties, a prerequisite for learning about the
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physics of pulsating neutron stars. The simple average pulse profile and single frequency of

PSR B0943+10 are reflected in a single set of pulsational parameters that would correspond

in our model to a single pulsation mode. In the more complex pulsars our model may demand

multiple oscillation modes whose pulsational parameters would yield physical properties of

neutron stars.
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Parameter Value σ

P1 1.097608 seconds · · ·
P2 0.031782 seconds 6.07558e-08 seconds

P3 2.05337 seconds · · ·
β −2.81◦ · · ·
α 8.03◦ · · ·
φo 2◦ · · ·
χo −9.15◦ 0.24◦

l 75 · · ·
a0,DPM 0.164 0.013

a0,V PM 0.1312 0.0027

a1,DPM 1.212 0.032

ψ0 −118.4◦ 2.4◦

ψdelay 53.9◦ 2.1◦

χ2 0.9338 · · ·

Table 2: The free and fixed parameters used in our model. If the parameter was a free

parameter, the value of σ is given. The results are from a fit of the first 100 pulses where

β and φo are fixed at −2.8◦ and 1.45◦, respectively. We get the values of P1 from the

Fourier transform of the entire run. We calculate P3 from equation four in Clemens &

Rosen (2004) such that 1/P3 = 1/Ptime − n/P1. Fits to the other 100-pulse segments were

not significantly different.
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5. Synthetic Pulsar Light Curves

We will now use our pulsational model and the best parameters fitted to the first 100

pulses of PSR B0943+10 to generate and analyze synthetic pulsar light curves. In this way,

we will learn whether our model has captured the essence of the variations in PSR B0943+10.

As in §3, we begin with the driftband. Figure 12 shows a comparison between the first

100 normalized pulses of the data (left panel) and synthetic lightcurves of PSR B0943+10.

In the middle panel we have added random noise to the model to increase its variance to be

approximately that of the data. Our driftband shows the splitting on the right-hand-side of

the profile as observed in the star. In the model, it comes about because the time-like maxima

in the velocity polarization mode are offset from the displacement polarization mode by an

amount related to ψdelay. Note that this means that the parallel track has a polarization 90◦

different from the displacement polarization track, an effect reproduced in our polarization

angle histogram which we discuss later.

In our model, the amplitudes and the spatial envelopes of the velocity and displacement

polarization modes are also different, because Ψl,m=0 has its maxima at antinodes and
∂Ψl,m=0

∂θmag

has its maxima at nodes. This is why the velocity polarization mode track does not extend

through the whole driftband. This track is also asymmetric, appearing on the right-hand-

side of the driftband and not the left. In our model, this asymmetry arises from an offset

between a maximum in the pulse window, φmean, and the longitude of the magnetic pole, φo.

While the difference between φmean and φo is not related to pulsation parameters, it may

lead to interesting insight in the pulsar emission mechanism.
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Fig. 12.— Left panel: The first 100 pulses of PSR B0943+10 folded at P3 = 1.8708P1 sec-

onds, using the fitted value of P3, compared to the left panel of Figure 4, where the data

are folded at a value of P3 calculated from the Fourier transform. Middle panel: Our

model of the data, using the values of the parameters in Table 2 calculated from Gaussfit.

We have added random noise to the simulation so the variance in the simulation approxi-

mately matches the variance in the data. Right panel: Our same simulation, without noise.

The phase in the bottom panels were calculated using all 816 pulses in both the data and

simulations.
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Fig. 13.— Top panel: A fully-resolved Fourier transform all 816 normalized pulses from

the archival data of PSR B0943+10. Bottom panel: A Fourier transform of our simulated

data where we have added random noise. The peaks centered around 30 Hz are the subpulse

frequency and its aliases. The harmonic of the subpulse frequency and its aliases are centered

around 65 Hz. The values of the parameters used in our model are listed in Table 2.
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We can also make a visual comparison of our pulsational model to the data in Fourier

space. We used the model parameters in Table 2 to create 816 pulses matching the resolution

of the data. The bottom panel of Figure 13 shows a fully-resolved Fourier transform of our

simulated data where we have added random noise to our simulation. The Fourier transform

of our simulation does not show the splitting in the subpulse frequency, as discussed in §3,

because we have created our model only using a single subpulse frequency. To reproduce the

closely spaced peaks, our model would require the introduction of additional, incommensu-

rate subpulse frequency or the subpulse frequency would have to wander as a function of

time. For comparison, the top panel of Figure 13 shows the fully-resolved Fourier transform

of the normalized data.

While the unfolded Fourier transform does not reproduce the amplitude of the harmonic

structure well, this is not surprising because we are modeling the subpulses, not the low

frequency pulse window. Despite this, both the harmonic and longitude-resolved fluctuation

spectra, shown in Figures 14 and 15 respectively, closely reproduce the data. In both figures,

we show the spectra of first 100 pulses of data that were fit using Gaussfit, both unaltered

and normalized. The bottom panels show the fluctuation spectra from our simulation with

and without noise.
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Fig. 14.— Upper panels: The longitude resolved fluctuation spectra of the first 100 pulses of

data. The left-hand-side shows the raw data while the right-hand-side shows the data after

our normalization process. Lower panels: The longitude resolved fluctuation spectra of 100

pulses of simulated data using the values of the parameters listed in Table 2 (left) and with

the addition of noise (right). The contour levels are in mJy2.
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Fig. 15.— Upper panels: The harmonic resolved fluctuation spectra of the first 100 pulses of

data. The left-hand-side shows the raw data while the right-hand-side shows the data after

our normalization process. Lower panels: The harmonic resolved fluctuation spectra of 100

pulses of simulated data using the values of the parameters listed in Table 2 (left) and with

the addition of noise (right). The contour levels are in mJy2.
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Fig. 16.— Left panel: The properties of PSR B0943+10 using all 816 pulses in the archival

data. The top two panels show in histogram form the polarization angle and the fractional

linear polarization percent. The average pulse shape is in the bottom panel. Right panel:

Our model of the data, using the results of Gaussfit. Noise was adding using the off-pulse

noise from the archival data.
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We can further compare our model to the data using plots similar to those in Stinebring

et al. (1984a, 1984b). We recreate plots of the polarization angle, polarization fraction, and

total intensity. Figure 16 shows the normalized data of all 816 pulses in the left panel and

all 816 pulses from our simulation in the right panel. We have added noise to our simulation

in the same way as we did in the driftband plot in Figure 12. Our model pulse shape reflects

the Gaussian window imposed and does not match the data in the wings of the profile.

Our polarization fraction is more tightly grouped at 0% and 100%, in part because we do

not include an unpolarized component in our model, as we discussed in §3. Our velocity

polarization mode is weaker than the corresponding track in the angle histogram of the

data. Nonetheless, Figure 16 represents a dramatic improvement in our ability to model

pulsar data. It is based on an objective fit that was not constrained by the quantities in

this plot but by the lightcurve directly. The striking similarities between our model and the

data give us confidence that our pulsation model can reproduce significant features in PSR

B0943+10.

6. Summary and Conclusions

Our objective in this paper has been first to fit single pulse data of PSR B0943+10 using

a pulsational model and second, to create simulated pulsar lightcurves from the best fit. The

model we use was developed in (Clemens & Rosen 2004) and in a companion paper to this one

(Clemens & Rosen 2007). It is founded upon pulsational displacements and their associated

surface velocities, which result in the emission of distinct polarization modes orthogonal to

each other.

We chose PSR B0943+10 as an initial target for our study because it has a simple mor-

phology and is well-studied in the literature. We were surprised in our analysis of published

data to find undocumented behaviors in the form of driftband splitting, frequency splitting,

and phase wandering of the subpulses. The driftband splitting is a stable feature of the

data while the frequency and phase wandering are more erratic and in need of further ob-

servational study. The model we use is based on a single pulsational frequency and cannot

reproduce the erratic behavior, but it has been able to reproduce the driftband splitting.

Our fitting exercise has been successful; our least squares fitting algorithm converged

to a solution for an amplitude normalized data set from which we had removed circular

polarization. The fitted parameters for this converged model represent an objective appli-

cation of our pulsation model to PSR B0943+10. We have used them to create synthetic

data that reproduce the stable features of the observations, including the pulse shape, the

polarization angles, and the orthogonal mode morphology. Our model cannot reproduce the
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pulse amplitude distribution and therefore we cannot quantitatively access the validity of

our model beyond its ability to reproduce the more stable features of the data.

If we accept a pulsational model for the drifting subpulses in PSR B0943+10, then some

of our fitted parameters have physical significance. P2 represents the eigenperiod of a single

pulsation mode. The spherical harmonic degree of this mode, `, is unknown for reasons we

have explained. The amplitudes we measured and the value of ` are not meaningful without

better understanding of the radio emission mechanism. The fitted quantity ψdelay reflects

an adjustment between the phase of the pulsational displacements and pulsational velocities,

which would be 90◦ for an adiabatic pulsation. Positive values of ψdelay mean that maximum

heating follows maximum compression and requires some mechanism for delaying the flux

changes. Curiously, the sign and value of ψdelay in our fits to PSR B0943+10 are similar to the

measured value for pulsating white dwarfs in which the flux is delayed by a surface convection

zone (Goldreich & Wu 1999). Our value of ψdelay is consistent with the identification of the

displacement polarization mode as a surface flux phenomena related to pulsations.

From an astroseismological perspective, PSR B0943+10 is not the most interesting

target for study. The simplicity that makes it attractive for testing our model limits the

useful physics that can be extracted. There are other pulsars, e.g. PSR B0031-07, that

show multiple subpulse frequencies and others that appear to show correlated oscillations

between the magnetic poles (Weltevrede, Wright, & Stappers 2007). It will be an interesting

challenge to apply our pulsational model to objects like these. Edwards (2006) has proposed

the phase behavior of subpulses as a critical test of the drifting spark model and his argument

applies equally well to our model. It is possible that broader studies of more complex pulsars

will be able to rule out non-radial oscillations as the origin of their subpulses, but for now,

PSR B0943+10 remains an encouraging example of a pulsar whose subpulse behavior can

be reproduced by stellar pulsation model.
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