142 research outputs found

    The effect of laser remelting on the surface chemistry of Ti6al4V components fabricated by selective laser melting

    Get PDF
    Surface remelting/skin scanning of components is generally performed during the selective laser melting (SLM) process to improve the surface quality of a part. However, the chemical effects of surface remelting are not well understood. In this study, cuboidal parts fabricated with and without laser remelting were characterised using scanning electron microscopy (SEM), surface profilometry and X-ray photoelectron spectrophotometry (XPS). The SEM images showed a low-amplitude undulating pattern was observed on both surfaces. The surface chemistries of the surface remelted/skin scanned (SK) and non-surface remelted/non-skin scanned (NSK) samples were observed to significantly differ in their elemental composition. The thickness of the surface oxide layer of the SK surface was double that of the NSK surface. Also, the contribution of the major alloying elements, including titanium and aluminium, on the surface oxide layer varied for both NSK and SK surfaces. The surface chemistry of the NSK and SK surface was significantly different to a conventionally forged (CF) Ti6Al4V surface. The rate of decrease of oxide with depth was in the order of CF > NSK > SK. Although surface remelting is useful in rendering improved surface quality, its impact on surface chemistry should be carefully considered

    Genetic and environmental factors affecting litter size in swine

    Get PDF
    This bulletin reports on Department of Agricultural Chemistry Research Project 223, 'Reproductive Physiology', and Department of Animal Husbandry, 222, 'Swine Improvement'--P. [3].Digitized 2007 AES.Includes bibliographical references (pages [41-42])

    Optimisation of substrate angles for multi-material and multi-functional inkjet printing

    Get PDF
    Three dimensional inkjet printing of multiple materials for electronics applications are challenging due to the limited material availability, inconsistencies in layer thickness between dissimilar materials and the need to expose the printed tracks of metal nanoparticles to temperature above 100 °C for sintering. It is envisaged that instead of printing a dielectric and a conductive material on the same plane, by printing conductive tracks on an angled dielectric surface, the required number of silver layers and consequently, the exposure of the polymer to high temperature and the build time of the component can be significantly reduced. Conductive tracks printed with a fixed print height (FH) showed significantly better resolution for all angles than the fixed slope (FS) sample where the print height varied to maintain the slope length. The electrical resistance of the tracks remained under 10Ω up to 60° for FH; whereas for the FS samples, the resistance remained under 10Ω for samples up to 45°. Thus by fixing the print height to 4 mm, precise tracks with low resistance can be printed at substrate angles up to 60°. By adopting this approach, the build height “Z” can be quickly attained with less exposure of the polymer to high temperature

    Combined inkjet printing and infrared sintering of silver nanoparticles using a swathe-by-swathe and layer-by-layer approach for 3-dimensional structures

    Get PDF
    Despite the advancement of additive manufacturing (AM)/3-dimensional (3D) printing, single-step fabrication of multifunctional parts using AM is limited. With the view of enabling multifunctional AM (MFAM), in this study, sintering of metal nanoparticles was performed to obtain conductivity for continuous line inkjet printing of electronics. This was achieved using a bespoke three dimensional (3D) inkjet-printing machine, JETx®, capable of printing a range of materials and utilizing different post processing procedures to print multi-layered 3D structures in a single manufacturing step. Multiple layers of silver were printed from an ink containing silver nanoparticles (AgNPs) and infra-red sintered using a swathe-by-swathe (SS) and layer-by-layer sintering (LS) regime. The differences in the heat profile for the SS and LS was observed to influence the coalescence of the AgNPs. Void percentage of both SS and LS samples was higher towards the top layer than the bottom layer due to relatively less IR exposure in the top than the bottom. The results depicted a homogeneous microstructure for LS of AgNPs and showed less deformation compared to the SS. Electrical resistivity of the LS tracks (13.6 ± 1μΩ cm) was lower than the SS tracks (22.5 ± 1 μΩ cm). This study recommends the use of LS method to sinter the AgNPs to obtain a conductive track in 25% less time than SS method for MFAM

    Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound

    Get PDF
    Surface modification of an implant with a biomolecule is used to improve its biocompatibility and to reduce post-implant complications. In this study, a novel approach has been used to functionalise phosphonic acid monolayers with a drug. Ti6Al4V components fabricated using selective laser melting (SLM) were functionalised with Paracetamol (a pharmaceutically relevant biomolecule) using phosphonic acid based self-assembled monolayers (SAMs). The attachment, stability of the monolayers on the SLM fabricated surface and functionalisation of SAMs with Paracetamol were studied using X-ray photoelectron spectroscopy (XPS) and surface wettability measurements. The obtained results confirmed that SAMs were stable on the Ti6Al4V surface for over four weeks and then began to desorb from the surface. The reaction used to functionalise the phosphonic acid monolayers with Paracetamol was noted to be successful. Thus, the proposed method has the potential to immobilise drugs/proteins to SAM coated surfaces and improve their biocompatibility and reduce post-implant complications

    Profiling leucocyte subsets in tuberculosis-diabetes co-morbidity

    Get PDF
    The immune system plays an important role in the pathogenesis of pulmonary tuberculosis–type 2 diabetes mellitus (PTB-DM) co-morbidity. However, the phenotypic profile of leucocyte subsets at homeostasis in individuals with active or latent tuberculosis (LTB) with coincident diabetes is not known. To characterize the influence of diabetes on leucocyte phenotypes in PTB or LTB, we examined the frequency (F(o)) of leucocyte subsets in individuals with TB with (PTB-DM) or without (PTB) diabetes; individuals with latent TB with (LTB-DM) or without (LTB) diabetes and non-TB-infected individuals with (NTB-DM) or without (NTB) diabetes. Coincident DM is characterized by significantly lower F(o) of effector memory CD4(+) T cells in LTB individuals. In contrast, DM is characterized by significantly lower F(o) of effector memory CD8(+) T cells and significantly higher F(o) of central memory CD8(+) T cells in PTB individuals. Coincident DM resulted in significantly higher F(o) of classical memory B cells in PTB and significantly higher F(o) of activated memory and atypical B cells in LTB individuals. Coincident DM resulted in significantly lower F(o) of classical and intermediate monocytes in PTB, LTB and NTB individuals. Finally, DM resulted in significantly lower F(o) of myeloid and plasmacytoid dendritic cells in PTB, LTB and NTB individuals. Our data reveal that coincident diabetes alters the cellular subset distribution of T cells, B cells, dendritic cells and monocytes in both individuals with active TB and those with latent TB, thus potentially impacting the pathogenesis of this co-morbid condition

    A Tripropylene Glycol Diacrylate-based Polymeric Support Ink for Material Jetting

    Get PDF
    © 2017 Support structures and materials are indispensable components in many Additive Manufacturing (AM) systems in order to fabricate complex 3D structures. For inkjet-based AM techniques (known as Material Jetting), there is a paucity of studies on specific inks for fabricating such support structures. This limits the potential of fabricating complex 3D objects containing overhanging structures. In this paper, we investigate the use of Tripropylene Glycol Diacrylated (TPGDA) to prepare a thermally stable ink with reliable printability to produce removable support structures in an experimental Material Jetting system. The addition of TGME to the TPGDA was found to considerably reduce the modulus of the photocured structure from 575MPa down to 27MPa by forming micro-pores in the cured structure. The cured support structure was shown to be easily removed following the fabrication process. During TG-IR tests the T 5% temperature of the support structure was above 150°C whilst the majority of decomposition happened around 400°C. Specimens containing overhanging structures (gate-like structure, propeller structure) were successfully manufactured to highlight the viability of the ink as a support material
    corecore