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ABSTRACT: Despite the advancement of additive manufacturing
(AM)/3-dimensional (3D) printing, single-step fabrication of multi-
functional parts using AM is limited. With the view of enabling
multifunctional AM (MFAM), in this study, sintering of metal
nanoparticles was performed to obtain conductivity for continuous
line inkjet printing of electronics. This was achieved using a bespoke
three-dimensional (3D) inkjet-printing machine, JETx, capable of
printing a range of materials and utilizing different post processing
procedures to print multilayered 3D structures in a single manufacturing
step. Multiple layers of silver were printed from an ink containing silver
nanoparticles (AgNPs) and infrared sintered using a swathe-by-swathe
(SS) and layer-by-layer sintering (LS) regime. The differences in the
heat profile for the SS and LS was observed to influence the coalescence
of the AgNPs. Void percentage of both SS and LS samples was higher
toward the top layer than the bottom layer due to relatively less IR exposure in the top than the bottom. The results depicted a
homogeneous microstructure for LS of AgNPs and showed less deformation compared to the SS. Electrical resistivity of the LS
tracks (13.6 ± 1 μΩ cm) was lower than the SS tracks (22.5 ± 1 μΩ cm). This study recommends the use of LS method to sinter
the AgNPs to obtain a conductive track in 25% less time than SS method for MFAM.
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■ INTRODUCTION

Additive manufacturing (AM), also referred as three-dimen-
sional (3D) printing has now evolved from making prototypes
to producing end-use parts. Although AM has advanced
significantly in recent years, the end-use parts produced by
this technology is restricted to single materials in most cases,
and limits the disruptive potential of AM to produce parts with
multiple functionality.1 Multifunctional AM (MFAM) is the
fabrication of multifunctional parts using AM technologies and
within this context, multifunctionality is the ability of a part to
function beyond the structural needs.
Despite the growing interest toward MFAM, the current

fabrication of most printed electronics (such as RFID tags,2

strain sensors,3 humidity sensors,4 and passive electronic
components5) is limited to the nano/micron scale in the
building (Z) direction, that is, printing less than 20 layers. The
studies that demonstrate fully 3D printed multifunctional
structures (millimeters/centimeters in the Z direction) mostly
involve fabrication of parts and components by using extrusion,
stereolithography or jetting based printing techniques and
embedding an electronic components into it.1,6 For example,
Wu et al.,7 3D printed parts with a hollow solenoid-shaped

channel and injected silver inks to fill the channel to make them
conductive for a sensing application. Shemelya et al.8

showcased 3D fabrication of sensors by integrating dielectrics
with electronic components using a hybrid system. Espalin et
al.9 fabricated dielectric structures using stereolithography and
dispensed conductive inks to form electrical interconnects
between components. Despite the advantages of the methods
described above to fabricate MFAM components, embedding
electrical components and printing conductive tracks, and
injecting conductive inks into printed channels will limit the
potential benefits that 3D printing has to offer. Circuits that are
traditionally printed in a single plane (XY) using lithographic
techniques can be designed to be printed in multiple planes
using 3D printing, thus opening-up a whole new range of
applications.10

MFAM, whereby printing multiple materials−both active and
passive elements of a part in a single-step may sound simple,
but in reality, it is a challenge yet to overcome. Some of the
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limiting factors include material availability, printing systems
that can print and consolidate multiple materials such as
polymers, metals and composites in a single step, and the
limited knowledge of printing and consolidating multiple
materials to fabricate 3D structures. Also there is a lack of
understanding on the interaction between different materials
when printed together and ways to incorporate active
components into the printed structure to attain multi-
functionality. One of the first steps for advancing MFAM is
to integrate both multimaterial printing and consolidation steps
in situ. A thorough understanding on the printing and
consolidation of an active material used for the circuitry is
also essential before printing circuits within a 3D geometry for
MFAM.
Material jetting is considered as one of the key enablers of

MFAM due to their ability to jet a wide range of materials
including polymers, composites and inks containing metal nano
particles (MNPs).11−13 Ink jet printing (IJP) is a drop-on-
demand, noncontact material jetting process capable of direct
printing circuits of complex geometries from a computer-aided
design (CAD).14 In addition to high material utilization rate
and lower wastage compared to conventional methods, IJP also
has the potential to simplify the manufacturing process of
circuits and reduce the associated costs.11

In recent years, the use of inks containing MNPs, such as
silver,15−18 gold,19 copper,20 and other conductive materials
including graphene,21 carbon nanotubes,22 poly(3.4-ethyl-
enedioxythiophene) polystyrenesulfonate,23 and direct writing
of liquid metals such as gallium, indium and tin have been
widely explored for printing circuits.24−26 Although a palette of
materials exist for printing conductive tracks, MNPs are still
preferred for the manufacturing of circuitry due to lower
complexity in the processing of inks containing MNPs and also
better resolution and thermal stability compared to conductive
polymers and liquid metals.11,27 The printed inks containing
MNPs are sintered typically at 120−200 °C depending on the
metal, its sintering characteristics, organic ligands and the
additives used in the ink formulation. The sintering temper-
ature of the MNPs can be as low as 20% of the melting
temperature of the metal due to their high surface-to-volume
ratio.28 For example, silver has a melting point of 960 °C
whereas silver nanoparticles (AgNPs) have been observed to
sinter at temperatures as low as 150 °C depending on the
particle size.29,30 Sintering of MNPs at a low temperature has
led to the fabrication of printed flexible electronics on various
polymeric substrates such as polyimide.31−33 However, most of
the commercially available and widely used 3D-inkjet printing
platforms (such as Dimatix,29,34 Jetlab,11 MicroDrop,16 Schmid
DOD300,35 and PiXDRO LP5036) are limited to only printing
of the inks and are not normally equipped with a method to
sinter the MNPs following deposition.
As a consequence, to facilitate the sintering process, the

printed pattern is typically transferred to another system
equipped with an energy source, such as an oven,27 infrared
(IR),37 electrical,38,39 laser,40 microwave,41,42 and photonic
sintering.43 Transferring the printed pattern to another system
for sintering can be time-consuming and complicated when
multiple layers of the same pattern are required to be printed
onto each other (i.e., building in the vertical, Z direction). From
an industrial point of view, the additional step to sinter the
jetted ink can add difficulties for large scale manufacturing and
is potentially expensive. These aspects can add further
constraints and limit the use of inkjet systems. Thus, there is

a requirement for developing a printing system that will suffice
the needs of printing and consolidating different materials.
In this study, an ink containing AgNPs was printed using a

bespoke 3D multimaterial IJP system, JETx, and subsequently
sintered using a built-in IR source. Two distinct sintering
methods, swathe-by-swathe (SS) and layer-by-layer (LS) were
employed to sinter the AgNP ink. Briefly during SS, each
swathe of a layer was sintered using IR whereas during LS, all
swathes were printed and subsequently sintered using the IR
source. It is envisioned that these sintering mechanism can lead
to variation in the layer formation, surface profile, micro-
structure and the corresponding electrical resistivity of the
printed structures. Since the development of multimaterial 3D
printing is nascent for electronic applications, it is essential to
understand the sintering behavior of AgNPs with these
methods. Currently, studies on inkjet printing and sintering
of AgNPs are limited to only a few layers (less than 20) and are
performed in multiple steps (i.e., printing and sintering on
different equipment). In this study, 50 layers of silver were
inkjet-printed and sintered in a single step and the impact of SS
and LS mechanisms on the printed structure is reported.

■ RESULTS AND DISCUSSION
Figure 1 shows the field emission gun-scanning electron
microscope (FEG-SEM) micrograph of AgNPs (unsintered)

present in the ink formulation used in this study. It can be seen
in Figure 1 that the size of the AgNPs were below 100 nm and
were in agreement with the average size of ∼50 nm quoted by
the manufacturer. However, some agglomeration was noted.

Droplet Characterization. Figure 2 shows droplets on a
glass (a) and a silver (b) surface (produced by printing a layer
of AgNPs to form 20 mm × 20 mm pattern on a glass slide and
IR sintered). The droplets formed on the glass substrate were
observed to be smaller (90 ± 6 μm) in size than the droplets
formed on the silver surface (150 ± 9 μm). This phenomenon

Figure 1. SEM image of the AgNPs present in the ink formulation.
The arrows indicate possible agglomeration of the AgNPs.

Figure 2. Optical microscopic images showing the droplet size of the
silver ink formed on (a) glass substrate and (b) silver surface.
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is mainly due to the different wetting behavior of the silver ink
on the glass and the silver surface.34

In inkjet printing, the overlapping of droplets is essential to
obtain a continuous pattern; however, too much of an overlap
can lead to an increased volume of the ink per unit area. If this
results in the drop or line exceeding the advancing contact
angle, it will lead to the triple line moving beyond the intended
location.44 Hence drop size is a crucial parameter in calculating
the drop overlaps and the size of the features to be printed.
Droplet overlap will change depending on the ink, substrate
(wettability) and also the surface temperature. As the diameter
of the print head nozzle is fixed, the droplet overlap is
controlled by increasing or decreasing the resolution of the
image (dpi). Since 50 layers of silver were printed in this study,
the average drop size obtained for silver on silver (150 ± 9 μm)
was used to calculate the drop overlap. The drop diameter
obtained for the AgNP ink on the glass surface was insignificant
since only one of silver was printed on the glass slide. Several
drop overlaps were experimented to maximize the thickness of
the layer of silver deposited in one pass. Beyond 65% overlap,
bulging and flow of the ink from the pattern was observed and
hence in this study, the drop overlap was limited to 65%.
Surface Morphology. Figure 3 shows the surface

morphology of the 50 layers of inkjet printed and sintered

AgNPs obtained using a benchtop scanning electron micro-
scope (SEM). When using the JETx machine, the 5 mm × 5
mm pattern was divided into 10 swathes. The machine prints a
swathe using 10 nozzles and hence forming 10 continuous
lines/tracks. A regular period at approximately 500 μm
observed in the figure for both the SS and LS silver pattern
(marked with arrows) corresponds to a single swathe. During
the SS, each swathe was printed and passed under the IR for
sintering before printing the next swathe; whereas during LS, all
10 swathes were printed and then sintered under the IR. As a
result, the surface temperature of the printed pattern remained
at approximately 138 °C ± 1.5 °C for SS and 162 °C ± 1.3 °C
for LS. This temperature was recorded using an IR
thermometer (error ±2 °C) when the substrate reached the

home position after the sintering step and before printing the
next layer. The IR thermometer was fixed to a tripod to avoid
any movement and focused from approximately 15 cm from the
printed surface. These surface temperatures noted for both SS
and LS samples exceeded the boiling of the solvent, Triethylene
Glycol Monoethyl Ether (TGME; 122 °C) present in the ink.
As a consequence, the removal of the solvent was likely to be
rapid in relation to the possible movement of the triple line and
thus pinning the AgNPs to the substrate without movement
beyond the desired print location. Hence the individual swathes
are visible for both SS and LS samples. However, during SS,
since every swathe is passes under the IR, the triple lines are
clearly visible than the LS. Micropits were observed on both the
SS and LS samples at varying levels. The micropits observed on
the SS sample were mostly larger in size than that observed on
the LS surface. It should be noted that both surfaces showcased
varying levels of roughness and are discussed below.

Surface Topography. The 3D surface topographies of the
5 mm × 5 mm samples processed by SS and LS methods are
shown in Figure 4a and 4b. The corresponding two-
dimensional (2D) profiles, obtained perpendicular to the
print direction (along Y axis) of the SS and LS samples, are
shown in Figure 4c and 4d. Both the 3D and the 2D surface
topographies clearly depict the individual swathes (∼500 μm
each) of the 5 mm2 SS and LS patterns. The arrow marks in the
3D profile indicate the areas that were not printed due to
clogging of the nozzles. These partially printed locations can
also be seen in the 2D profile (marked with arrows) of the SS
and LS surfaces. The double arrows marked in the 2D profile
indicate the profile of a single swathe. Deeper peaks/valleys can
be observed toward the edges of the swathes than the center.
This is because, during drying, the ink spreads toward the
boundaries of the swathes. The flow of the printed ink toward
the border is due to capillary flow45 (due to the evaporation
rate difference between the edge and the center), Marangoni
flow46 (due to surface tension gradient) and convective flow.47

These flows are strongly influenced by the temperature.48 In
addition to the individual swathes, spreading of ink toward the
edges was observed on the overall print pattern leading to
slightly thicker edges than at the center of the SS and LS
patterns. The thickness of the 50 layers of SS sample was
measured to be 33.7 μm ± 1.6 μm and the LS sample thickness
was measured as 37.2 μm ± 1.3 μm. This result was compared
with the thickness obtained for 100 layers for both SS (68.3
μm) and LS (71.3 μm) samples. The results showed a linear
trend with increasing layers.
The arithmetic mean heights (Sa) of the SS and LS samples

were measured from approximately 2.5 × 2.5 mm area of the
sample by avoiding the edges due to spreading of the ink to the
borders. The Sa of the SS sample was 4.53 μm whereas for the
LS it was 4.82. The small difference in the Sa values between
the SS and LS samples were due to the artifacts observed on the
surface. Since the surface roughness is an accumulation of the
roughness of the printed layers, to verify this phenomena 100
layers of both SS and LS samples were printed. The Sa of 100
layers of SS (8.66 μm) and LS (9.57) were almost double that
of the corresponding 50 layered samples. The deep trench
observed due to clogged nozzles is a contributing factors to the
increased Sa for both samples with increased layers. It should
be noted that this study did not attempt to claim which method
gives superior profile, but used the profile to observe the
spreading of the ink between the two methods.

Figure 3. SEM micrographs showing the surface morphology of the
inkjet printed and sintered AgNPs. (a) Swathe-by-swathe sintered
(SS) silver surface; (b) micropits observed on the SS silver surface; (c)
layer-by-layer sintered (LS) silver surface and (d) artifacts observed on
the LS surface. The arrow mark indicates the swathes (∼500 μm).
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Microstructure. Initially, to observe the microstructure, the
printed 50 layers of the silver on a glass slide was cold mounted
in a resin and mechanically polished using a series of grits and
abrasive paste. However, the polishing procedure left the
samples with a significant number of scratches possibly due to
peeling of the sintered silver and glass particles from the mount
and the abrasives on the pad. As a result, it was difficult to study
the microstructure of the sectioned area. To overcome this
issue, the printed SS and LS samples were sectioned
perpendicular to the printing direction by gently scoring the
printed pattern with a diamond pen and subsequently cracking
it. Figure 5 shows the cross section of 50 layers of both SS and
LS samples at different areas i.e., anterior, middle and the
posterior ends. The cross section of both samples did not

depict the existence of macroscopic voids and visually no
significant difference was observed for both SS and LL samples.
To examine the microstructures further, the middle region

(5th swathe) of the printed pattern was sectioned parallel to the
printing direction using a focused ion beam (FIB) and
examined using a transmission electron microscope (TEM).
The cross sectioned thin films of 3D inkjet-printed SS and LS
silver sample, and their corresponding microstructures are
shown in Figure 6. The depth of the TEM foil cut from the
printed sample was ∼5 μm. Thus, it should be noted that the
cross section shown in the Figure 6a and 6c is not the cross
section of the whole sample. Coalesced AgNPs can be clearly
observed from the figure for SS and LS samples. The black
areas observed on both SS and LS samples (Figure 6b and 6d)

Figure 4. 3D surface topographies of the 50 layers of silver processed using swathe-by-swathe sintered (SS; a) and layer-by-layer sintered (LS; b) and
the corresponding 2D surface profiles of the SS (c) and LS (d) samples. Single arrows indicate the missing area due to nozzle failure during printing
and double arrows indicate the single print swathe (∼500 μm) of the SS and LS samples.

Figure 5. Cross sectioned swathe-by-swathe (SS; a, anterior; b, middle; c, posterior) and layer-by-layer (LS; d, anterior; e, middle; f, posterior)
samples depicting their microstructures. Arrows indicate possible voids. The cross sectional images obtained from different locations within the SS
and LS sample did not show significant difference between them. Scale bar: 10 μm.
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are expected to be voids and not solvent residue. This is
because during IR sintering, the pattern was exposed to a
temperature (>138 °C) higher than the boiling point (122 °C)
of the main solvent of the ink, TGME. Similar voids have been
previously witnessed for the sintered AgNPs.29,49,50 However,
existence of residues of the additives from the ink at a very
small concentration may be possible. Because of the differences
in the milling depth, the cross sectioned LS sample (Figure 6a)
appear to be slightly thicker than the SS sample (Figure 6c).
Periodicity in the Z direction was observed for the LS sample

at approximately every 800 nm (marked with an arrow) but not
for the SS sample. This periodicity relates to the thickness of a

single printed silver layer. One of the possible reasons for SS
sample not showing this periodicity could be due to the
sintering temperature. As mentioned earlier, since the SS
sample moves between the print and the sintering position after
every swathe, some of its sample’s surface temperature is lost.
Consequently during LS, the sample is held under IR for 10
passes continuously. Because the LS sample stays under the IR
continuously for 10 exposures, the energy build up is more than
the SS. As a result, the residual temperature of LS (∼162 °C)
was higher than SS (∼138 °C) sample and in consequence, the
sintered grains showed a varied coalescence behavior for both
samples causing it to be difficult to locate the periodicity. The
surface profile showed a thickness of 37.2 ± 1.3 μm for the 50
layers of LS sample which equates to approximately 740 nm per
layer. The thickness of the LS sample obtained from the
periodicity in the SEM images correlated with the thickness
given by the surface profile.
The microstructure of both the SS and LS samples (Figure

6) showed variation in the Z direction. Because of their
irregular shape, the size of the coalesced particles was not
measured and instead, the void percentage was computed. The
SEM images obtained for both the SS and LS samples were
processed using MATLAB to obtain the void percentage of the
printed patterns. Figure 7 shows the SEM micrograph before
and after applying thresholding for SS and LS samples with the
graphical representation of the corresponding void percentage.
For image processing, white areas were treated as silver and the
black areas as voids. Detailed information on the image
processing has been given in the experimental methods.
It could be observed from the figure that the void percentage

of the SS sample was more than that of the LS sample. Also, it
was evident from the graphical representation (Figure 7c and
7f) that the SS sample had a significant variation in the void
percentage for each segment compared to the LS sample. Since
the voids were severe in the top than the bottom, a trend
showcasing smaller grains at the top and relatively larger grains
at the bottom can be noticed for both the SS and LS samples.

Figure 6. Microstructure of the IR sintered silver nanoparticles (a)
cross section of swathe-by-swathe sintered (SS) sample (∼top 5 μm);
(b) SS sample showing coalescence of AgNPs; (c) cross section of
layer-by-layer sintered (LS) sample (∼top 6 μm) and (d) coalescence
of AgNPs for the LS sample. The double arrows indicate the layer
thickness for the LS sample.

Figure 7.Micrographs used for image processing and the corresponding void percentage: (a) micrograph of a swathe-by-swathe (SS) sample, (b) the
corresponding image processed using MATLAB, (c) void percentage of the SS sample [bottom to the top], (d) micrograph of a layer-by-layer (LS)
sample, (e) the corresponding image processed using MATLAB, and (f) void percentage of the LS sample [bottom to the top].
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As mentioned previously, during SS, every swathe in a layer
was scanned under the IR. As a result, the first swathe of every
individual layer was subjected to IR sintering 10 times, whereas
the last swathe of the same layer was subjected to IR sintering
for only once. Also, for this 50 layer build, the first swathe (in
the first layer) was heated 500 times and the last swathe (the
last swathe of the fiftieth layer) was heated once. Hence the
energy supplied to sinter a layer would vary significantly
depending on the order of the swathe deposition. Also, the
coalescence of the particles usually increases at higher
temperature in a thermal sintering process. Thus, as it would
be expected, the SS sample showed irregular and a varied
coalescence with the top being less and the bottom being more.
Similar to the SS sample, the LS sample showed varied
coalescence of the AgNPs along the Z building direction.
However, the image processing results revealed a more
homogeneous distribution of the coalesced AgNPs for the LS
than the SS sample. This is likely due to the higher surface
temperature of the LS (162 °C ± 1.3 °C) than the SS (138 °C
± 1.5 °C) sample. To confirm this, thermogravimetric analysis
(TGA) and differential scanning calorimetry (DSC) analyses
were performed for the AgNP ink (Supporting Information).
The TGA of the AgNP ink showed a weight loss of ∼4% at 138
°C and ∼9% at 162 °C, revealing rapid solvent evaporation at
the surface temperature measured for the LS sample. In line
with the TGA results, the DSC also showed a relatively higher
heat flow at the sintering temperature of LS (162 °C) than the
SS (138 °C). Hence, the sintering temperature was observed to
have a significant effect on the coalescence behavior of the
AgNPs.
Despite the nonhomogeneous grain distribution in SS, the

coalesced SS grains appear to be larger than the LS. Due to the
homogeneous grain structure of the LS (PS) it is difficult to
locate the grain boundary and hence it would be difficult to
conclude actual grain size of the LS sample. In addition to this,
although the SS and LS samples were sectioned in the fifth
swathe, it is possible that the imaging was not performed
exactly on the same layer. Since both SS and LS showed
decrease in grain size with increase in the Z height, slight
differences in the location can also contribute to varied grain
size. As a result, the grain structure of the SS sample appear to
be larger than SS.
One of the disadvantages observed for the SS over LS is the

time consumption. The time taken to print and sinter 50 layers
of 5 mm × 5 mm silver pattern was 1 h for SS and 45 min for
LS method. This is due to the fact that during SS, the substrate
moved between print position and sintering position 10 times
(to print and sinter every swathe) whereas for LS, the substrate
moved once (after printing all swathes). Thus, printing using
LS instead of SS can yield a 25% time reduction overall. Also it
should be noted that when printing multiple layers of
conductive tracks on a polymeric material, prolonged IR

exposure can possibly degrade the material. Hence, the method
with less IR exposure time would be ideal.

Chemical Mapping. Figure 8 shows the chemical composi-
tional color mapping of both the SS and LS silver samples.
Figure 8a and 8c shows the area analyzed for the elemental
mapping with an energy dispersive X-rays (EDX) and the
corresponding color mapping for silver (Figure 8b and 8d).
The areas of the image rich in purple color represent silver and
since the signal intensity dropped, no element was traced on
the black areas of the image. As it could be observed from the
figure, for both the SS and LS samples, the color mapped
images featured primarily silver (in purple). The black areas
were predominantly voids due to the absence of material with
some signs of carbon residue (>3%).

Mechanical Deformation. Deformation of 100 layers of
both SS and LS samples for the applied load was studies using
an atomic force microscope (AFM) to study the relative
strength of the printed samples. Due to the low thickness (∼70
μm), the use of other methods such as nanoindendation were
not feasible. Figure 9 shows that the deformation of the SS

sample was 15% more than the LS sample. The big deviation
noted during the measurement is possibly due to the presence
of pores on the surface. Since the voidage of SS was relatively
higher than the LS sample in the top few layers (due to less
exposure to IR).

Electrical Resistivity. Electrical resistivity of 3D-inkjet
printed SS and LS silver tracks was calculated using the
relationship51

ρ = ⎜ ⎟
⎛
⎝

⎞
⎠R

A
L (1)

where ρ is the electrical resistivity to be calculated, R is the
resistance, A is the cross-sectional area of the track, and L is the
length of the track). 50 layers of tracks with 10 mm length and
1 mm width were printed and sintered using SS and LS
methods. Electrical resistivity of the SS sample (22.5 ± 0.1 μΩ
cm) was observed to be higher than that of the LS sample (13.6

Figure 8. EDX elemental mapping of swathe-by-swathe sintered (SS) and layer-by-layer sintered (LS) sample: (a) SS surface used for elemental
mapping, (b) silver (purple) mapped to the SS surface, (c) LS surface used for elemental mapping, and (d) silver (purple) mapped to the LS surface.

Figure 9. Deformation measured for the swathe-by-swathe sintered
(SS) and layer-by-layer sintered (LS) samples for the applied load
using an atomic force microscope.

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.6b14787
ACS Appl. Mater. Interfaces XXXX, XXX, XXX−XXX

F

http://dx.doi.org/10.1021/acsami.6b14787


± 0.1 μΩ cm). The observed electrical resistivity for the SS and
LS samples was nearly 14 and 8 times of the resistivity of bulk
silver, respectively. The major reason for the high resistivity of
the SS and LS samples compared to the bulk silver is due to the
presence of voids in these samples. According to Matthiessen’s
rule, resistivity is the sum of the resistivities due to temperature,
impurities and defects in the metal. There is a percolation
threshold above which the material will conduct but the
presence of impurities and defects will resist the flow of current.
After a certain level (a continuous path is established for the
flow of electrons), the presence of voids does not interfere with
the conductivity of the material and behave almost similar to
the conductivity of a solid material.50

Although, the presence of residues from the solvent or other
additives in the ink after IR exposure can also be a contributing
factor, the elemental analysis picked low amount of carbon
(3%). Hence, voids are expected to be the major factor
influencing the resistivity. As expected, due to the presence of
more silver/less voids in the LS compared to the SS sample, the
resistivity of the LS sample was lower than the SS sample. It has
been shown that on increasing the sintering temperature, the
electrical resistivity generally decreases.52 This is because when
the temperature is high, surface energy of the particles would be
reduced to form necks through particle boundary and surface
diffusion,53 thus enabling more contact between the coalesced
particles. Since the LS sample remained at relatively high
surface temperature (162 °C ± 1.3 °C) compared to the SS
sample (138 °C ± 1.5 °C), the resistivity of LS was lower than
the SS.
Similar results with resistivity ranging between 2.7 μΩ cm

and 90 μΩ cm were witnessed previously for inkjet printed
AgNPs.11,32,37,50 However, a small difference in the resistivity
values between the literature and the current study might have
been due to various factors including the substrate used, silver
and the additive concentration in the ink, sintering method
(such as IR, oven, plasma and laser), time and temperature for
sintering, the level of porosity and ink residues in the sintered
structure. Resistivity of 10 to 15 times of the bulk silver was
previously reported to be sufficient for the printed electronics
application50 and the resistivity of both LS and SS samples were
well within this range.
This method has advantages over the other existing methods

since due to the nature of the machine and the process used,
multiple materials can be printed and processed in a single step
without the need to transfer to other equipment for sintering or
further deposition purposes. Since IJP is already capable of
printing a range of dielectric and conductive materials, this
method will enable users to make multifunctional parts with
both conductive and dielectric materials printed in situ in a
single step. Also, inkjet printing can precisely position droplets
on demand and hence high resolution of printed patterns can
be obtained.
Prior studies that report on printing wires, helical structures,

bridges, and other 3D structures by using metal nano particles
usually requires additional steps such as substrate heating or an
annealing/sintering.54,55 In view of printing multiple materials,
these additional steps will limit contemporaneous printing of
multimaterial structures with polymers and conductive metals.
The microstructure of printed and sintered AgNPs available in
the literature is a limited to less than 20 layers;50,56,57 whereas
in this study, 50 layers were continuously printed using two
sintering methods and their microstructures, surface top-
ography, mechanical strength and their electrical property

were evaluated to add to the existing knowledge in the
literature. As mentioned earlier, the presented results will be
beneficial for enabling the MFAM.
Direct deposition of liquid metals such as gallium, indium,

tin, bismuth and their alloys are explored for various electronic
applications.24−26 Although free-standing structures and high
strain rates when stretched can be observed for the printed
liquid metals, they have limitations in resolution (∼100 μm).
This is mainly due to the high surface tension of the liquid
metal inks such as Ga−In. High precision of the printed
patterns required for several complex integrated circuits is
difficult to achieve with direct deposition of liquid metals. Also,
the resistivity of the tracks printed using the liquid metals is
relatively higher than the resistivity offered by the tracks printed
using silver and gold nanoparticles.50 Adhesion of the printed
liquid metals on several substrates are poor and hence,
encapsulation of the printed circuitry is a must.58 In contrast,
relatively better adhesion was observed for the inkjet printed
AgNP inks and the printed circuits are normally stable.59 In
addition, deposition of liquid metals is not compatible with the
currently used patterning techniques such as lithography and
inkjet printing. The use of parts containing liquid metals are
limited to a certain temperature. Formation of sharp edges and
connecting the printed electrodes with other materials can be
difficult. Since the printed conductive pattern will be in liquid
form, under a certain electric/magnetic field, movement of the
liquid metal and shifting of the printed pattern is possible which
can alternative affect the device performance.58 Although the
use of liquid metals at a lab scale is demonstrated, scaling-up of
this direct deposition of liquid metals may be a challenge.
Despite the advantages of using the proposed method, one

has to be aware of the current limitations. The Spectra print
head used in the JETx printer has a nozzle diameter of 35 μm.
Hence, the droplet resolution is limited up to 35 μm. However,
the ink’s rheology and its spreading behavior plays a crucial role
in determining the resolution. IJP depicted coffee-ring effects
during solvent drying and hence when building multiple layers,
the edges of the printed pattern would be expected to be
thicker than the center. Therefore, attaining a uniform layer
after each printed layer can be difficult. As mentioned
previously, the surface topography and roughness of the final
printed layer is the accumulation of every layer. Hence,
attaining a uniform layer while printing multiple layers is a
challenge. Although inkjet printing enables multimaterial
printing, the proposed printing methodology has challenges
to overcome. As mentioned above, the print resolution is
limited to 35 μm with the Spectra SE128 print head used in this
study; however, this can be improved by modifying the surface
wettability and changing the nozzle size of the print head. The
temperature required for sintering AgNPs can be problematic
especially when printing on a heat sensitive substrates such as
polymers. Since parts are built layer-by-layer, this method to
print macroscopic parts with our configuration would be slow.
However, the efficiency can be improved by scaling up the
number of nozzles and number of print heads. The stability of
the ink and nozzle blockage while printing multiple layers could
also have a negative impact on the printing process. A
combined printing and a cleaning strategy whereby after
printing a certain number of layers spitting/purging of the ink
can be performed to overcome the nozzle blockage. Obtaining
an even surface finish of the inkjet printed parts is typically
limited due to an undulating surface. Optimization of process
parameters such as print strategy, resolution of the pattern,
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printing conditions, sintering speed and temperature can be
performed to obtain a better surface finish. Inevitably, the
limited material palette for inkjet printing is another constraint
with the use of current method.

■ CONCLUSION
This study explored the sintering of inkjet-printed silver
nanoparticles using two different IR sintering mechanisms for
3D MFAM. LS of the printed pattern was observed to be
superior in terms of the microstructure, mechanical strength
and resistivity compared to the SS. Also, fabrication of
structures using the LS was 25% faster compared to the SS.
Thus, by inkjet printing and sintering of multiple layers of
MNPs in a single step, this study enables the possibilities for
the fabrication and realization of 3D-MFAM relatively faster
and simpler than the conventional methods.

■ EXPERIMENTAL METHODS
Materials. Ink containing silver nanoparticles (Silverjet DGP-

40LT-15C) was purchased from Advanced Nano Products (ANP).
The ink formulation consisted of 38.85 wt % of silver, 50−60 wt % of
triethylene glycol monoethyl ether (TGME) as solvent and 7−15 wt %
of additives according to the manufacturer’s specification. Soda-lime
glass slides (Cole-Parmer Instrument Co. Ltd., U.K.) were used to
print the patterns. Isopropyl alcohol ≤99.5% for cleaning the glass
slide was purchased from Sigma-Aldrich, U.K. A surface mount light
emitting diode (LED) was purchased from RS components Ltd., U.K.
Equipment. The inkjet printing machine employed in this study

was JETx (Roth & Rau BV). This bespoke machine is built with six
print heads (Spectra SE128). The build volume (XYZ) of the machine
is 200 mm × 200 mm × 190 mm. The machine is equipped with an
ultraviolet (UV) radiation source with a wavelength of 395 nm and an
output of 2 W/cm2, and an infrared lamp (1 kW) with a maximum
filament temperature of 1500 °C for curing/sintering of heat/
photosensitive materials. More details have been provided in the
Supporting Information. An RS 1327K infrared thermometer (RS
components Ltd., U.K.; accuracy ± 2 °C) was used to measure the
surface temperature of the printed pattern.
Design. A 5 mm × 5 mm pattern with 500 dpi was designed using

the open source software, GIMP (The General Image Manipulation
Program). The file was saved as bitmap (.bmp) image file format.
Three tracks each with the dimensions 20 mm × 1 mm and 500 dpi
was designed for electrical resistance measurement. A bitmap file (500
dpi) showcasing one pixel at regular intervals (1 mm) for drop size
characterization was also designed using GIMP.
3D-Printing. The glass slides used to build the pattern were rinsed

with isopropyl alcohol and dried to remove contaminants from
atmosphere. The build plate of the JETx machine is typically
maintained at 20 °C to prevent the deformation of the platform
because of thermal expansion. This chilled platform will counteract
with the heat produced by the IR and affect the sintering of silver.
Hence the glass slide was positioned above two ceramic chalks to raise
it 5 mm above the build platform and have air as insulator between the
slide and the build platform. A material file defining the process
parameters was created using the inbuilt JETx recipe generator. The
previously optimized process parameters were used in this study and
they are tabulated in Table 1. Once the material file is applied, printing
was started. Briefly during printing, the build platform moved in X

direction and the print heads moved in Y and Z direction. After
printing a swath or a layer (depending on SS or LS), the build platform
moved under the IR lamp and the AgNPs were sintered under the
specified conditions. Once sintering of the swath (SS) is complete, the
platform moved back to the printing station for the next print. On
completing a layer, the build platform returned to home position and
then moved to the print station. This continues until the whole pattern
(50 layers) was printed. For LS sample, every layer was printed and
subsequently passed under the IR for sintering. Finally the glass slide
with the inkjet-printed and sintered 50 layers of silver was removed
from the platform and characterized. Similar procedure was used to
print and sinter 50 layers of tracks for electrical resistivity
measurement and the demonstrator. The surface temperature of the
SS and LS sample after printing and sintering every layer of the 5 mm
× 5 mm pattern was measured using an IR thermometer fixed next to
the print platform and averaged. It should be noted that the printed
pattern for the droplet characterization was not sintered.

Droplet Characterization. The single droplets printed on the
glass slide and on silver coated glass slide were observed under Nikon
Eclipse (LV100ND) optical microscope. Using in-built software, the
droplet size was measured. The size of 15 droplets were measured and
averaged.

Sample Preparation. To examine the cross sectional area of the
printed sample, the printed samples on a glass slide scored
perpendicular to the print direction using a diamond pen and gently
broken. One of the two broken slide was cold mounted using a
mixture (7.5 mL: 1 mL) of an epoxy resin and a hardener. The
mounted sample was mechanical polishing was performed using silicon
carbide grits (P280, P400, P800, and P1200) and diamond paste (6
and 1 μm) supplied by Buehler, U.K. For force curve measurement
using atomic force microscope, 100 layers SS and LS samples printed
on a glass slide was cold mounted using an epoxy resin. The samples
were mounted such that the top surface of the sample can be used for
the study. The mounted sample was gently ground using a P1200 grit
to remove polymer residues and polished using polishing cloth with 6
and 1 μm diamond paste as the abrasive. Polishing was gently
performed such that the printed layers were not completely removed.
Polishing was necessary to remove the wavy profile of the surface and
aid precise measurement for AFM tip. The polished surface was
examined using the optical microscope before AFM characterization.

Surface Characterization. Surface Topography Measurement.
The surface topography of the printed silver tracks was obtained using
focus-variation 3D microscope (Alicona Infinite Focus G5),60

equipped with a 10× objective with pixel size, 0.88 μm × 0.88 μm;
size of an individual field-of-view (FOV), approximately 1.62 mm ×
1.62 mm (1840 × 1840 pixels). Polarized light was used to
compensate for the high reflectivity of the track surfaces. Individual
tracks were coarsely aligned to the instrument x-axis and measured in
stitching mode (up to 6 × 1 stitched, individual FOVs), typically
covering 3−6 mm of track, depending on track characteristics. A
dedicated procedure for dimensional and geometric characterization of
the individual tracks was devised based on previous work.61 For
computing the Sa parameter, the topographies were subjected to
leveling by least-squares mean plane subtraction, with no additional
filtering operation. Arithmetic mean height (Sa) was obtained from an
area of approximately 2.5 mm × 2.5 mm avoiding the edges. The 2D
surface profile was obtained vertically (Y) from the center of the
pattern. Further information detailing surface topography data
processing and analysis for an individual track is given in the
Supporting Information.

Table 1. Process Conditions Used for SS and LS of AgNPs

sintering method
number of
swathes

printing speed
(mm/s)

IR
intensity
(%)

Height of the substrate
from IR (mm)

rate of substrate movement
under IR (mm/s) number of passes under IR

swathe-by-
swathe (SS)

10 300 50 5 5 10 (1 pass after every swathe)

layer-by-layer
(LS)

10 300 50 5 5 10 (after printing a layer)

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.6b14787
ACS Appl. Mater. Interfaces XXXX, XXX, XXX−XXX

H

http://pubs.acs.org/doi/suppl/10.1021/acsami.6b14787/suppl_file/am6b14787_si_002.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.6b14787/suppl_file/am6b14787_si_002.pdf
http://dx.doi.org/10.1021/acsami.6b14787


Surface Morphology. Nikon Eclipse (LV100ND) optical micro-
scope was used to obtain the surface morphology of the SS and LS
silver patterns (5 mm2). Surface morphology of the printed SS and LS
patterns was obtained using a Hitachi TM3030 tabletop scanning
electron microscope (SEM). Acceleration voltage of 15 kV was used
and the images were acquired in the topography mode.
Microstructure. FEI XL30 (Philips) scanning electron microscope

(SEM) fitted with a tungsten hairpin filament was used to obtain the
microstructure of the cross sectional area of SS and LS samples. To
study the microstructure in detail, transmission electron microscope
(TEM; TECNAI F20 TEM) was employed. Electron transparent foil
from the SS and LS samples were initially prepared using a focused ion
beam (FIB)-SEM workstation (Nova 600 Nanolab Dual Beam).
Bright-field imaging and EDX mapping were performed using an
accelerating voltage of 200 kV. The 5 mm2 pattern was divided into 10
swathes and hence, the microstructural analysis was performed on the
middle of the printed pattern, that is, in the fifth swathe.
Image Processing. SEM micrographs of the SS and LS samples

were image processed in MATLAB. The SEM images used for the
image processing were obtained from the top regions of the 50 layer
SS and LS samples. Various thresholding values were used and the
thresholded images were superimposed on the original image until a
true representation of the image was obtained. The thresholding value
for the SS and LS images were same. The SS and LS images were then
sectioned into 10 equal segments in the building Z direction and 5
equal segments in the X direction to calculate the void percentage as a
function of building direction. The sectioned images were analyzed for
the black versus white areas. The black pixels were accounted as voids
and the white pixels as silver. The obtained mean void percentage was
plotted graphically and the reported standard deviation was obtained
from the 5 segments of the image along the X direction.
Mechanical Deformation. D3000 Bruker Atomic force microscope

(AFM) was used to study the deformation behavior of the printed
samples. Bruker MPP-13100-10 rectangular tip with a resonant
frequency of 525 kHz and a spring constant of 200 N/m was
employed in this study. No modification to the tip was performed to
obtain the mechanical force curve. Force measurement was performed
in contact-mode. Detector sensitivity was calibrated based on the force
curve obtained for the plain glass used to print the samples. 100
measurement were performed for both samples on an area away from
the edges and trenches.
Electrical Resistivity. Electrical resistivity for SS and LS was

obtained by measuring the resistance offered by the 50 layered tracks
using a Hameg LCR high precision meter (HM 8018). The volume of
the tracks were computed by integrating the surface profiles of the
tracks obtained from surface profilometry. The possible error of ±1
μΩ due to the LCR equipment should be accounted. The reported
values in this study are an average of the electrical resistivity of three
different tracks.
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