2,493 research outputs found
Quantitative study of valence and configuration interaction parameters of the Kondo semiconductors CeM2Al10 (M = Ru, Os and Fe) by means of bulk-sensitive hard x-ray photoelectron spectroscopy
The occupancy of the 4f^n contributions in the Kondo semiconductors
CeM2Al10(M = Ru, Os and Fe) has been quantitatively determined by means of
bulk-sensitive hard x-ray photoelectron spectroscopy (HAXPES) on the Ce 3d core
levels. Combining a configuration interaction scheme with full multiplet
calculations allowed to accurately describe the HAXPES data despite the
presence of strong plasmon excitations in the spectra. The configuration
interaction parameters obtained from this analysis -- in particular the
hybridization strength V_eff and the effective f binding energy Delta_f --
indicate a slightly stronger exchange interaction in CeOs2Al10 compared to
CeRu2Al10, and a significant increase in CeFe2Al10. This verifies the
coexistence of a substantial amount of Kondo screening with magnetic order and
places the entire CeM2Al10 family in the region of strong exchange
interactions.Comment: 9 pages, 4 figures, submitted to Physical Review
CeRuSn: a strongly correlated material with nontrivial topology
Topological insulators form a novel state of matter that provides new
opportunities to create unique quantum phenomena. While the materials used so
far are based on semiconductors, recent theoretical studies predict that also
strongly correlated systems can show non-trivial topological properties,
thereby allowing even the emergence of surface phenomena that are not possible
with topological band insulators. From a practical point of view, it is also
expected that strong correlations will reduce the disturbing impact of defects
or impurities, and at the same increase the Fermi velocities of the topological
surface states. The challenge is now to discover such correlated materials.
Here, using advanced x-ray spectroscopies in combination with band structure
calculations, we infer that CeRuSn is a strongly correlated material
with non-trivial topology.Comment: 10 pages, 6 figures, submitted to Scientific Report
Antiferromagnetic correlations in strongly valence fluctuating CeIrSn
CeIrSn with a quasikagome Ce lattice in the hexagonal basal plane is a
strongly valence fluctuating compound, as we confirm by hard x-ray
photoelectron spectroscopy and inelastic neutron scattering, with a high Kondo
temperature of \,K. We report a negative in-plane
thermal expansion below 2\,K, which passes through a broad minimum
near 0.75\,K. Volume and -axis magnetostriction for are
markedly negative at low fields and change sign before a sharp metamagnetic
anomaly at 6\,T. These behaviors are unexpected for Ce-based intermediate
valence systems, which should feature positive expansivity. Rather they point
towards antiferromagnetic correlations at very low temperatures. This is
supported by muon spin relaxation measurements down to 0.1\,K, which provide
microscopic evidence for a broad distribution of internal magnetic fields.
Comparison with isostructural CeRhSn suggests that these antiferromagnetic
correlations emerging at result from geometrical
frustration.Comment: to be published in Phys. Rev. Let
High Accuracy 65nm OPC Verification: Full Process Window Model vs. Critical Failure ORC
It is becoming more and more difficult to ensure robust patterning after OPC due to the continuous reduction of layout dimensions and diminishing process windows associated with each successive lithographic generation. Lithographers must guarantee high imaging fidelity throughout the entire range of normal process variations. The techniques of Mask Rule Checking (MRC) and Optical Rule Checking (ORC) have become mandatory tools for ensuring that OPC delivers robust patterning. However the first method relies on geometrical checks and the second one is based on a model built at best process conditions. Thus those techniques do not have the ability to address all potential printing errors throughout the process window (PW). To address this issue, a technique known as Critical Failure ORC (CFORC) was introduced that uses optical parameters from aerial image simulations. In CFORC, a numerical model is used to correlate these optical parameters with experimental data taken throughout the process window to predict printing errors. This method has proven its efficiency for detecting potential printing issues through the entire process window [1]. However this analytical method is based on optical parameters extracted via an optical model built at single process conditions. It is reasonable to expect that a verification method involving optical models built from several points throughout PW would provide more accurate predictions of printing errors for complex features. To verify this approach, compact optical models similar to those used for standard OPC were built and calibrated with experimental data measured at the PW limits. This model is then applied to various test patterns to predict potential printing errors. In this paper, a comparison between these two approaches is presented for the poly layer at 65 nm node patterning. Examples of specific failure predictions obtained separately with the two techniques are compared with experimental results. The details of implementing these two techniques on full product layouts are also included in this study
Spectroscopic evidence of Kondo-induced quasi-quartet in CeRhAs
CeRhAs is a new multiphase superconductor with strong suggestions for
an additional itinerant multipolar ordered phase. The modeling of the low
temperature properties of this heavy fermion compound requires a quartet
Ce crystal-field ground state. Here we provide the evidence for the
formation of such a quartet state using x-ray spectroscopy. Core-level
photoelectron and x-ray absorption spectroscopy confirm the presence of Kondo
hybridization in CeRhAs. The temperature dependence of the linear
dichroism unambiguously reveils the impact of Kondo physics for coupling the
Kramer's doublets into an effective quasi-quartet. Non-resonant inelastic x-ray
scattering data find that the state with its lobes along
the 110 direction of the tetragonal structure ( orientation) contributes
most to the multi-orbital ground state of CeRhAs.Comment: 8 pages, 7 figure
Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions
The weak nucleon axial-vector form factor for quasi-elastic interactions is
determined using neutrino interaction data from the K2K Scintillating Fiber
detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of
which half are charged-current quasi-elastic interactions nu-mu n to mu- p
occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for
oxygen and assume the form factor is approximately a dipole with one parameter,
the axial vector mass M_A, and fit to the shape of the distribution of the
square of the momentum transfer from the nucleon to the nucleus. Our best fit
result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated
vector form factors from recent electron scattering experiments and a
discussion of the effects of the nucleon momentum on the shape of the fitted
distributions.Comment: 14 pages, 10 figures, 6 table
Study of e+e- --> pi+ pi- pi0 process using initial state radiation with BABAR
The process e+e- --> pi+ pi- pi0 gamma has been studied at a center-of-mass
energy near the Y(4S) resonance using a 89.3 fb-1 data sample collected with
the BaBar detector at the PEP-II collider. From the measured 3pi mass spectrum
we have obtained the products of branching fractions for the omega and phi
mesons, B(omega --> e+e-)B(omega --> 3pi)=(6.70 +/- 0.06 +/- 0.27)10-5 and
B(phi --> e+e-)B(phi --> 3pi)=(4.30 +/- 0.08 +/- 0.21)10-5, and evaluated the
e+e- --> pi+ pi- pi0 cross section for the e+e- center-of-mass energy range
1.05 to 3.00 GeV. About 900 e+e- --> J/psi gamma --> pi+ pi- pi0 gamma events
have been selected and the branching fraction B(J/psi --> pi+ pi- pi0)=(2.18
+/- 0.19)% has been measured.Comment: 21 pages, 37 postscript figues, submitted to Phys. Rev.
Measurement of Branching Fraction and Dalitz Distribution for B0->D(*)+/- K0 pi-/+ Decays
We present measurements of the branching fractions for the three-body decays
B0 -> D(*)-/+ K0 pi^+/-B0 -> D(*)-/+ K*+/- using
a sample of approximately 88 million BBbar pairs collected by the BABAR
detector at the PEP-II asymmetric energy storage ring.
We measure:
B(B0->D-/+ K0 pi+/-)=(4.9 +/- 0.7(stat) +/- 0.5 (syst)) 10^{-4}
B(B0->D*-/+ K0 pi+/-)=(3.0 +/- 0.7(stat) +/- 0.3 (syst)) 10^{-4}
B(B0->D-/+ K*+/-)=(4.6 +/- 0.6(stat) +/- 0.5 (syst)) 10^{-4}
B(B0->D*-/+ K*+/-)=(3.2 +/- 0.6(stat) +/- 0.3 (syst)) 10^{-4}
From these measurements we determine the fractions of resonant events to be :
f(B0-> D-/+ K*+/-) = 0.63 +/- 0.08(stat) +/- 0.04(syst) f(B0-> D*-/+ K*+/-) =
0.72 +/- 0.14(stat) +/- 0.05(syst)Comment: 7 pages, 3 figures submitted to Phys. Rev. Let
- …