2,493 research outputs found

    Quantitative study of valence and configuration interaction parameters of the Kondo semiconductors CeM2Al10 (M = Ru, Os and Fe) by means of bulk-sensitive hard x-ray photoelectron spectroscopy

    Full text link
    The occupancy of the 4f^n contributions in the Kondo semiconductors CeM2Al10(M = Ru, Os and Fe) has been quantitatively determined by means of bulk-sensitive hard x-ray photoelectron spectroscopy (HAXPES) on the Ce 3d core levels. Combining a configuration interaction scheme with full multiplet calculations allowed to accurately describe the HAXPES data despite the presence of strong plasmon excitations in the spectra. The configuration interaction parameters obtained from this analysis -- in particular the hybridization strength V_eff and the effective f binding energy Delta_f -- indicate a slightly stronger exchange interaction in CeOs2Al10 compared to CeRu2Al10, and a significant increase in CeFe2Al10. This verifies the coexistence of a substantial amount of Kondo screening with magnetic order and places the entire CeM2Al10 family in the region of strong exchange interactions.Comment: 9 pages, 4 figures, submitted to Physical Review

    CeRu4_4Sn6_6: a strongly correlated material with nontrivial topology

    Get PDF
    Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena that are not possible with topological band insulators. From a practical point of view, it is also expected that strong correlations will reduce the disturbing impact of defects or impurities, and at the same increase the Fermi velocities of the topological surface states. The challenge is now to discover such correlated materials. Here, using advanced x-ray spectroscopies in combination with band structure calculations, we infer that CeRu4_4Sn6_6 is a strongly correlated material with non-trivial topology.Comment: 10 pages, 6 figures, submitted to Scientific Report

    Antiferromagnetic correlations in strongly valence fluctuating CeIrSn

    Full text link
    CeIrSn with a quasikagome Ce lattice in the hexagonal basal plane is a strongly valence fluctuating compound, as we confirm by hard x-ray photoelectron spectroscopy and inelastic neutron scattering, with a high Kondo temperature of TK480T_{\mathrm{K}}\sim 480\,K. We report a negative in-plane thermal expansion α/T\alpha/T below 2\,K, which passes through a broad minimum near 0.75\,K. Volume and aa-axis magnetostriction for BaB \parallel a are markedly negative at low fields and change sign before a sharp metamagnetic anomaly at 6\,T. These behaviors are unexpected for Ce-based intermediate valence systems, which should feature positive expansivity. Rather they point towards antiferromagnetic correlations at very low temperatures. This is supported by muon spin relaxation measurements down to 0.1\,K, which provide microscopic evidence for a broad distribution of internal magnetic fields. Comparison with isostructural CeRhSn suggests that these antiferromagnetic correlations emerging at TTKT\ll T_{\mathrm{K}} result from geometrical frustration.Comment: to be published in Phys. Rev. Let

    High Accuracy 65nm OPC Verification: Full Process Window Model vs. Critical Failure ORC

    Get PDF
    It is becoming more and more difficult to ensure robust patterning after OPC due to the continuous reduction of layout dimensions and diminishing process windows associated with each successive lithographic generation. Lithographers must guarantee high imaging fidelity throughout the entire range of normal process variations. The techniques of Mask Rule Checking (MRC) and Optical Rule Checking (ORC) have become mandatory tools for ensuring that OPC delivers robust patterning. However the first method relies on geometrical checks and the second one is based on a model built at best process conditions. Thus those techniques do not have the ability to address all potential printing errors throughout the process window (PW). To address this issue, a technique known as Critical Failure ORC (CFORC) was introduced that uses optical parameters from aerial image simulations. In CFORC, a numerical model is used to correlate these optical parameters with experimental data taken throughout the process window to predict printing errors. This method has proven its efficiency for detecting potential printing issues through the entire process window [1]. However this analytical method is based on optical parameters extracted via an optical model built at single process conditions. It is reasonable to expect that a verification method involving optical models built from several points throughout PW would provide more accurate predictions of printing errors for complex features. To verify this approach, compact optical models similar to those used for standard OPC were built and calibrated with experimental data measured at the PW limits. This model is then applied to various test patterns to predict potential printing errors. In this paper, a comparison between these two approaches is presented for the poly layer at 65 nm node patterning. Examples of specific failure predictions obtained separately with the two techniques are compared with experimental results. The details of implementing these two techniques on full product layouts are also included in this study

    Spectroscopic evidence of Kondo-induced quasi-quartet in CeRh2_2As2_2

    Full text link
    CeRh2_2As2_2 is a new multiphase superconductor with strong suggestions for an additional itinerant multipolar ordered phase. The modeling of the low temperature properties of this heavy fermion compound requires a quartet Ce3+^{3+} crystal-field ground state. Here we provide the evidence for the formation of such a quartet state using x-ray spectroscopy. Core-level photoelectron and x-ray absorption spectroscopy confirm the presence of Kondo hybridization in CeRh2_2As2_2. The temperature dependence of the linear dichroism unambiguously reveils the impact of Kondo physics for coupling the Kramer's doublets into an effective quasi-quartet. Non-resonant inelastic x-ray scattering data find that the Γ7|\Gamma_7^- \rangle state with its lobes along the 110 direction of the tetragonal structure (xyxy orientation) contributes most to the multi-orbital ground state of CeRh2_2As2_2.Comment: 8 pages, 7 figure

    Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions

    Get PDF
    The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.Comment: 14 pages, 10 figures, 6 table

    Study of e+e- --> pi+ pi- pi0 process using initial state radiation with BABAR

    Get PDF
    The process e+e- --> pi+ pi- pi0 gamma has been studied at a center-of-mass energy near the Y(4S) resonance using a 89.3 fb-1 data sample collected with the BaBar detector at the PEP-II collider. From the measured 3pi mass spectrum we have obtained the products of branching fractions for the omega and phi mesons, B(omega --> e+e-)B(omega --> 3pi)=(6.70 +/- 0.06 +/- 0.27)10-5 and B(phi --> e+e-)B(phi --> 3pi)=(4.30 +/- 0.08 +/- 0.21)10-5, and evaluated the e+e- --> pi+ pi- pi0 cross section for the e+e- center-of-mass energy range 1.05 to 3.00 GeV. About 900 e+e- --> J/psi gamma --> pi+ pi- pi0 gamma events have been selected and the branching fraction B(J/psi --> pi+ pi- pi0)=(2.18 +/- 0.19)% has been measured.Comment: 21 pages, 37 postscript figues, submitted to Phys. Rev.

    Measurement of Branching Fraction and Dalitz Distribution for B0->D(*)+/- K0 pi-/+ Decays

    Get PDF
    We present measurements of the branching fractions for the three-body decays B0 -> D(*)-/+ K0 pi^+/-andtheirresonantsubmodes and their resonant submodes B0 -> D(*)-/+ K*+/- using a sample of approximately 88 million BBbar pairs collected by the BABAR detector at the PEP-II asymmetric energy storage ring. We measure: B(B0->D-/+ K0 pi+/-)=(4.9 +/- 0.7(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K0 pi+/-)=(3.0 +/- 0.7(stat) +/- 0.3 (syst)) 10^{-4} B(B0->D-/+ K*+/-)=(4.6 +/- 0.6(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K*+/-)=(3.2 +/- 0.6(stat) +/- 0.3 (syst)) 10^{-4} From these measurements we determine the fractions of resonant events to be : f(B0-> D-/+ K*+/-) = 0.63 +/- 0.08(stat) +/- 0.04(syst) f(B0-> D*-/+ K*+/-) = 0.72 +/- 0.14(stat) +/- 0.05(syst)Comment: 7 pages, 3 figures submitted to Phys. Rev. Let
    corecore