952 research outputs found

    Aluminum runway surface as possible aid to aircraft braking

    Get PDF
    Several concepts are described for use singly or in combination to improve aircraft braking. All involve a thin layer of aluminum covering all or part of the runway. Advantage would derive from faster heat conduction from the tire-runway interface. Heating of tread surface with consequent softening and loss of friction coefficient should be reduced. Equations are developed indicating that at least 99 percent of friction heat should flow into the aluminum. Preliminary test results indicate a coefficient of sliding friction of 1.4, with predictably slight heating of tread. Elimination of conventional brakes is at least a remote possibility

    Comparative chromosome band mapping in primates byin situ suppression hybridization of band specific DNA microlibraries

    Get PDF
    A DNA-library established from microdissected bands 8q23 to 8q24.1 of normal human chromosomes 8 (Lüdecke et al., 1989) was used as a probe for chromosomal in situ suppression (CISS-) hybridization to metaphase chromosomes of man and primates including Hylobates lar and Macaca fuscata. Comparative band mapping as first applied in this study shows the specific visualization of a single subchromosomal region in all three species and thus demonstrates that synteny of the bulk sequences of a specific human chromosome subregion has been conserved for more than 20 million years

    Fluorescence in situ hybridization of YAC clones after Alu-PCR amplification

    Get PDF
    Alu-PCR protocols were optimized for the generation of human DNA probes from yeast strains containing yeast artificial chromosomes (YACs) with human inserts between 100 and 800 kb in size. The resulting DNA probes were used in chromosome in situ suppression (CISS) hybridization experiments. Strong fluorescent signals on both chromatids indicated the localization of specific YAC clones, while two clearly distinguishable signals were observed in ≥90% of diploid nuclei Signal intensities were generally comparable to those observed using chromosome-specific alphoid DNA probes. This approach will facilitate the rapid mapping of YAC clones and their use in chromosome analysis at all stages of the cell cycle

    Sorting of chromosomes by magnetic separation

    Get PDF
    Chromosomes were isolated from Chinese hamster x human hybrid cell lines containing four and nine human chromosomes. Human genomic DNA was biotinylated by nick translation and used to label the human chromosomes by in situ hybridization in suspension. Streptavidin was covalently coupled to the surface of magnetic beads and these were incubated with the hybridized chromosomes. The human chromosomes were bound to the magnetic beads through the strong biotin-streptavidin complex and then rapidly separated from nonlabeled Chinese hamster chromosomes by a simple permanent magnet. The hybridization was visualized by additional binding of avidin-FITC (fluorescein) to the unoccupied biotinylated human DNA bound to the human chromosomes. After magnetic separation, up to 98% of the individual chromosomes attached to magnetic beads were classified as human chromosomes by fluorescence microscopy

    The use of fluorescence in situ hybridisation combined with premature chromosome condensation for the identification of chromosome damage.

    Get PDF
    The technique of fusing mitotic cells to interphase cells, thereby producing condensation of the chromosomes of the interphase cell (so-called 'premature chromosome condensation' or PCC), has allowed detection of the initial number of chromosome breaks and their repair following ionising radiation. However, the difficulty and tedium of scoring all the chromosome fragments, as well as the inability to readily detect exchange aberrations, has limited the use of PCC. We describe here the use of the recently developed technique of fluorescence in situ hybridisation with whole chromosome libraries to stain individual human chromosomes (also called 'chromosome painting') with the PCC's and show that this overcomes most of the limitations with the analysis of PCC's. First, by focusing on a single chromosome, scoring of breaks in the target chromosome is easy and rapid and greatly expands the radiation dose range over which the PCC technique can be used. Second, it allows the easy recognition of exchange type aberrations. A number of new applications of this technology, such as predicting the radiosensitivity of human tumours in situ, are feasible

    A large field CCD system for quantitative imaging of microarrays

    Get PDF
    We describe a charge-coupled device (CCD) imaging system for microarrays capable of acquiring quantitative, high dynamic range images of very large fields. Illumination is supplied by an arc lamp, and filters are used to define excitation and emission bands. The system is linear down to fluorochrome densities ≪1 molecule/µm(2). The ratios of the illumination intensity distributions for all excitation wavelengths have a maximum deviation ∼±4% over the object field, so that images can be analyzed without computational corrections for the illumination pattern unless higher accuracy is desired. Custom designed detection optics produce achromatic images of the spectral region from ∼ 450 to ∼750 nm. Acquisition of a series of images of multiple fluorochromes from multiple arrays occurs under computer control. The version of the system described in detail provides images of 20 mm square areas using a 27 mm square, 2K × 2K pixel, cooled CCD chip with a well depth of ∼10(5) electrons, and provides ratio measurements accurate to a few percent over a dynamic range in intensity >1000. Resolution referred to the sample is 10 µm, sufficient for obtaining quantitative multicolor images from >30 000 array elements in an 18 mm × 18 mm square

    Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries

    Get PDF
    A method of in situ hybridization for visualizing individual human chromosomes from pter to qter, both in metaphase spreads and interphase nuclei, is reported. DNA inserts from a single chromosomal library are labeled with biotin and partially preannealed with a titrated amount of total human genomic DNA prior to hybridization with cellular or chromosomal preparations. The cross-hybridization of repetitive sequences to nontargeted chromosomes can be markedly suppressed under appropriate preannealing conditions. The remaining single-stranded DNA is hybridized to specimens of interest and detected with fluorescent or enzymelabeled avidin conjugates following post-hybridization washes. DNA inserts from recombinant libraries for chromosomes 1, 4, 7, 8, 13, 14, 18, 20, 21, 22, and X were assessed for their ability to decorate specifically their cognate chromosome; most libraries proved to be highly specific. Quantitative densitometric analyses indicated that the ratio of specific to nonspecific hybridization signal under optimal preannealing conditions was at least 8:1. Interphase nuclei showed a cohesive territorial organization of chromosomal domains, and laserscanning confocal fluorescence microscopy was used to aid the 3-D visualization of these domains. This method should be useful for both karyotypic studies and for the analysis of chromosome topography in interphase cells

    Rapid interphase and metaphase assessment of specific chromosomal changes in neuroectodermal tumor cells by in situ hybridization with chemically modified DNA probes

    Get PDF
    Repeated DNAs from the constitutive heterochromatin of human chromosomes 1 and 18 were used as probes in nonradioactive in situ hybridization experiments to define specific numerical and structural chromosome aberrations in three human glioma cell lines and one neuroblastoma cell line. The number of spots detected in interphase nuclei of these tumor cell lines and in normal diploid nuclei correlated well with metaphase counts of chromosomes specifically labeled by in situ hybridization. Rapid and reliable assessments of aneuploid chromosome numbers in tumor lines in double hybridization experiments were achieved, and rare cells with bizarre phenotype and chromosome constitution could be evaluated in a given tumor cell population. Even with suboptimal or rare chromosome spreads specific chromosome aberrations were delineated. As more extensive probe sets become available this approach will become increasingly powerful for uncovering various genetic alterations and their progression in tumor cells
    • …
    corecore