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ALUMINUM RUNWAY SURFACE AS POSSIBLE AID TO AIRCRAFT BRAKING

by C. David Miller and I. Irving Pinkel

Aerospace Safety Research and Data Institute
Lewis Research Center

SUMMARY

Possible advantages are discussed that could result from use of aluminum as a full
or partial cover for a runway surface. Such advantages are based on the fact that alu-
minum can conduct frictionally generated heat away from the tire-runway interface at a
rate about two orders of magnitude greater than is possible with an asphalt or concrete
surface. Very rapid conduction of the heat should substantially reduce heating of the
tread rubber with the consequent softening and loss of friction coefficient.

Preliminary results of tests under an NASA grant at the University of Michigan are
mentioned, including a coefficient of sliding friction of 1. 4 between tread rubber and a
smooth aluminum surface with predictably slight heating of the tread.

Equations are developed to predict the ratio of the split of frictionally generated
heat between rubber and aluminum. The equations indicate that 99 percent or more of
the heat should go into the aluminum.

A possible arrangement is described by which the routine braking of an aircraft with
moderate braking forces could be done on the aluminum surface by yawing of wheels,
with no need for conventional brakes. A special auxiliary arrangement is suggested for
emergency stops. \

~x \Rain water, snow, and ice are recognized as possible problems,r\4Reasons are pre-"^ -*v ~ *a\sented to indicate these problems may not be insurmountable. Periodic cleaning of the
aluminum surface would be necessary, but preliminary indicatioris|are that only mod-
erate cleaning might suffice. <*--"

INTRODUCTION

Because aircraft tire-runway friction and wear continue to be a safety and economic
concern to aircraft operators, NASA has been investigating ways for providing high run-
way friction for improved aircraft braking and reduced tire wear. The demonstrated



advantage of grooved runways for achieving high tire-runway friction, explored by the
Langley Research Center, are being applied with good results. The relation between
rubber chemistry and tire wear is under study by the Ames Research Center. As an
alternate approach to this problem, this report suggests that high temperatures that may
soften the tire tread surface might be responsible for low tire-runway friction and rapid
tire wear. An analysis is presented on the partition of the tire friction heat between the
runway and the tire, which indicates that runway surfaces of high thermal conductivity
would maintain tire tread temperatures cool enough for good friction coefficients and
low wear 'rates. Such conductive surfaces might be provided by a thin layer of aluminum
sheet against which rubber tires develop satisfactory friction coefficients. Preliminary
friction coefficient measurements with tire tread free of surface oxide glaze are en-
couraging.

The concepts developed in this report are presented as a basis for further study to
determine how such factors as runway surface dryness or wetness, runway surface tex-
ture and cleanliness, and tire tread surface condition relate to the practicality and po-
tential benefits of this approach. The report also offers for consideration methods for
relieving the heat load on aircraft brakes by absorbing a meaningful portion of the air-
plane kinetic energy in frictional heating at the tire-runway interface.

The SI system of units is used as the primary system throughout the text. However,
the system of units that is more common in America is used for calculations and the re-
sults are then converted to SI units.

The authors collaborated on the main text of this report; the two appendices, how-
ever, were solely the work of the first author.

THEORY OF ALUMINUM RUNWAY SURFACE

The idea that aircraft braking might be improved by use of a thin aluminum skin
over part or all of the runway surface is based principally on the following two concepts:

(1) "Greater braking force than presently possible might become available because
the increased rate of conduction of heat by use of the aluminum skin should greatly re-
duce frictional heating of the rubber-runway interface (or footprint), which may cause
softening of the rubber surface with consequent reduction of friction coefficient under
existing conditions.

(2) The aluminum skin might serve as a heat sink in lieu of the thick (and heavy)
pads that exist in present-day aircraft brakes.

The reduction of interface temperature could possibly yield an incidental advantage
of a reduced rate of tire wear. The reduction of interface temperature, combined with
use of the aluminum as a heat sink, might enable braking entirely by yawing of wheels
with elimination of conventional brakes.



Retreading or replacement of tires is a large item in aircraft maintenance cost.
Overhaul or replacement of brakes is also a large item. Moreover, elimination of
brakes as such and reduction of tire wear should save much aircraft down time associ-
ated with tire and brake servicing.

If a greatly enhanced coefficient of friction should prove to be feasible, of course
an optimum compromise might have to be sought between the utility of the higher coef-
ficient and the undesirable aspects of the stronger aircraft undercarriages that would
be necessary.

Both the hope of maintaining a relatively cool rubber-aluminum interface arid the
hope of using the aluminum skin as a heat sink depend on certain tribophysical consider-
ations. Important background material in this field has been published by Blok (ref . 1),
by Schaaf (ref. 2), and by Ling and Saibel (ref. 3). However, a somewhat different ap-
proach to the subject will now be offered which, though simple, seems to provide good
insight regarding the possible advantages of an aluminum surface on a runway.

Theory of Flow of Frictional Heat

Basic to a theoretical evaluation of the two concepts we have described is a new
boundary equation that approximately defines the split between the flows of frictionally
generated heat to one of the rubbing surfaces or the other. A necessary preliminary to
a derivation of the new boundary equation is an equation approximately defining the par-
tition of contact conductance across the interface of two materials. For use in the
boundary equation, we define the contact conductance a of the interface as the recipro-
cal of the resistance of the interface to the flow of heat across it. The contact conduc-
tance is measured in heat units per unit temperature difference across the interface,
per unit time, per unit area of the interface.

The approximate equation for the partition of contact conductance, developed in
appendix A, is

a k
— = — (A13)
"a ka

where a_ and a- are contact conductances ascribed to the rubber and aluminum sides
J7 a,

of the interface, respectively, and k and k are the conductivities of rubber andr 3,
aluminum. The relation of a and a to the contact conductance of the interface is

I* 3.

(A14)



For general applicability, the derivation of equation (A13) requires an assumption
•r-

that the flow of heat through voids or contaminants within the interface is negligible in
comparison with the flow through the minute areas of firm molecule-to-molecule contact
between rubber and aluminum. But for the use of equations (A13) and (A 14) that will be
made here such assumption is unnecessary.

With use of equations (A13) and (A14) and other well-known relations the new bound-
ary equation, as derived in appendix B, is

[ —}S(y, z, t) + a \<p. (x, y, z, t) - <p (x, y, z, t) 1,
\ka + kr/ Lr J

~ka—a = ' ~—te(y'Z.t) + ot\<p._(x. y. z.t) - o>_(x. y. z.t)|, x = 0

(B14)

or

r 3x

k \ -,
)g(y, z, t) + a |cpa(x, y, z, t) - <pr(x, y, z, t)J,

a/
-k_ = ( k(y, z, t) + aIc0_(x, y, z, t) - o>_(x, v, z, t) I, x = 0

(B15)

where x is always positive and is the distance from the interface measured in either
direction, y and z are spatial coordinates within the interface, t is time, <z> (x, y, z, t)

a,

and tp (x, y, z, t) are local temperatures within or on the surface of the aluminum and the
rubber, respectively, and g(y, z, t) is the rate of heat generation by friction per unit
area of interface as a function of y, z, and t. Note that equations (B14) and (B15) are
redundant in the sense that either equation implies the other.

The derivation of equations (B14) and (B15) required an assumption that negligible
heat would be generated by slippage between rubber and contaminants or aluminum and
contaminants within the interface or by fluid or plastic shearing within contaminant. An
assumption was also used that appreciable heat would not be generated by internal fric-
tion within the rubber, due, possibly, to local stick-slip conditions within the interface
such as might cause cyclic local internal deformations of the rubber. As mentioned
before, the assumption of negligible heat flow through contaminant was not needed.

Now that equations (B14) and (B15) are available, some theoretical deductions about
the possible use of an aluminum skin on a runway surface to reduce interface tempera-
tures and thereby to maintain a high coefficient of friction will be discussed.

Possible Enhancement of Friction Coefficient with Use of Aluminum Skin on Runway

Slippage between a tire tread and the surface upon which it rolls is known to exist
even for a free rolling tire (ref. 4). Figure 1 represents a possible model for longitu-



dinal slide only. The principle to be discussed would be basically unchanged even if the
model were considerably wrong in detail. (Lateral slide is also known to exist. ) Equal
increments of tread circumference dX are marked in the figure, throughout the parts
of the tread that are well removed from the footprint or area of contact with the runway.
These increments are assumed to compress steadily to shorter lengths as they approach
the footprint and as they progress through the footprint to its transverse centerline.
Thereafter they are assumed to expand again. At any position, the length that was dX
becomes dX - AX, where AX is the amount of longitudinal compression of the incre-
ment.

In order that the same number of increments may pass any angular position on the
tread per unit time, it is necessary that the tread velocity v, at any position shall be
proportional to the compressed length of an increment at that angular position, that is,
proportional to dX - AX. Hence, the slip rate at any position within the footprint will be

vsi = Vtr - vwh = Cs - *X - vwh

where C , is constant for given vwn, which is the linear velocity of the wheel relative
to the runway. There should be two positions of no slip where

C r i ( d X - A X ) = v w h (2)

The slip ahead of the first such position and behind the second should be toward the rear.
The slip between those two positions should be forward. The total frictional force ex-
erted by the tread on the runway toward the rear, due to slip in that direction, must
equal the total forward frictional force due to forward slip (disregarding rolling resis-
tance).

The rate of heat generation for each differential area within the footprint, approxi-
mately constant in time, should be

g(y, z)dy dz = pf v^ dy dz = pf | [cgZ (dX - AX) - vwh] | dy dz (3)

where p is the normal pressure and f is the friction coefficient for the differential
area dy dz. But, if we assume that p, f, and AX are the same for all values of v , ,
then C , , v , , and g(y, z)dy dz must all be proportional to vwn.

Therefore, with the high rolling velocity of aircraft tires, and the high values of p
in equation (3), the values of g(y, z)dy dz may be high even without the application of
any braking force. Because of the low thermal conductivities of both rubber and asphalt
or concrete, we should therefore expect relatively high temperatures within the rubber-
runway interface even without braking.



But even more important are the implications of this discussion relative to the heat-
ing of the tread surface by braking. If it were theoretically and practically possible that
free rolling would not involve slip, then we could reasonably expect that at least moder-
ate braking would be possible without slip. Braking force up to the limit that might be
provided by static friction, acting over the whole surface of the footprint, should then
be possible without slip. The force would be transmitted from the interface into the
carcass of the tire by shearing deformation of the tread in all planes parallel to the in-
terface.

But with only two narrow bands that do not slip even without braking, as shown in
figure 1, braking force would be provided only by increasing the area within which for-
ward slip occurs and decreasing the area in which backward slip occurs. The two points
of no slip would move farther apart. The result would be that any braking force would
increase the heat generation by friction in the interface. With greater braking force
greater friction heating would occur, and greater degradation of friction coefficient be-
cause of softening of the rubber. Such degradation of friction coefficient, with tempera-
ture elevations of the tread surface that could possibly amount to 100 or more degrees
Kelvin (several hundred degrees Fahrenheit), would explain the fact that actual braking
forces are not nearly as great as should reasonably be predicted from static tests of
friction coefficient.

As each part of the tire tread contacts the runway repeatedly, the tread would be-
come hotter than the part of the runway surface within the interface. With heavy brak-
ing, under the concept just described, and with poor conductivity of both tread rubber
and the runway, the rubber surface could conceivably become very hot. Intuitively it
seems obvious that higher conductivity of the runway surface by two orders of magnitude
would substantially reduce the temperatures reached by the tread surface at all times
during a braking run. A quantitative estimate of the reduction would be too complex to
undertake here.

However, the effect of greater conductivity of the runway surface may be perceived
qualitatively by inspection of equation (B15). That equation applies only to a differential
area of tread surface during a differential time. But the temperature existing within any
differential area on the tread surface at any time depends on the application of equa-
tion (B15) to that differential area throughout all previous differentials of time, during
which the differential area was in contact with the runway, and on the conduction of heat
into the tread rubber and into the runway. The term kr/(

k
r + k

a) g(y> z> t) represents a
flow of heat from the tire-runway interface into the surface of the rubber. It should be
greatly reduced by a much larger value of k . The term akp (x, y, z, t) - <p_(x, y, z, t)a L «* r j
represents flow of heat from the tread surface into the aluminum surface. This flow
should be greatly increased by lower values of <p0(x, y, z, t) resulting from greater con-

a,

ductivity of the aluminum. The great decrease in the one flow and increase of the other,
within all differential areas at all times, should greatly reduce the tread surface tern-



peratures existing at any time within any part of the footprint. Hence, we should expect,
with existing brake mechanisms, that with an aluminum-surfaced runway we would suf-
fer much less of the degradation of friction coefficient that is caused by the frictional
heating of the tread surface.

This advantage might be gained to a considerable degree if only a fraction of the
total runway surface were aluminum. For example, if aluminum particles were
sprinkled over the asphalt and pressed in with a roller they might conduct away a large
part of the friction heat.

Possible Stopping Distance with Aluminum Skin

Low-speed tests at the University of Michigan under an NASA grant, transmitted in
personal communication by Professor S. K. Clark, have consistently shown a coefficient
of sliding friction of 1. 4 between automotive tire tread rubber and a clean aluminum sur-
face, with a tread loading of about 2x10 newtons per meter squared (30 psi). The rise
in temperature of the tread surface was about as should be expected on the basis of
equations (B14) and (B15). A 152-meter (500-ft) locked-wheel slide with such loading
(with a lower coefficient of friction of about 0. 4 because of heavy contamination) showed
a temperature rise of less than 0. 6 K (1° F) at a depth of less than 0. 3 centimeter
(1/8 in.) within the tread. These two results approximately support the assumption
noted earlier that little heat is generated by internal friction of the rubber under sliding
conditions.

The coefficient of 1. 4 would allow an airplane at 82. 5 meters per second (160 knots)
to stop in 246 meters (807 ft). According to the theory that has now been explained,
actual realization of such a stopping distance could not be ruled out without actual test
results. It is true that so high a coefficient has not been approached in any known earlier
tests with an aircraft tire and an aluminum surface. But, in view of the achievement of
such a coefficient in a low-speed test, and in view of the theory that has been presented
concerning possible degradation of friction coefficient at higher speeds, intense research
effort would appear to be justified to make certain whether such a coefficient could be
obtained at high speeds in practice. All the options that will be discussed are predicated
to some extent on an assumption of success in such research.

Options Involving Possible Use of Aluminum Skin on Runway as Heat Sink

Many possible variations in manner of implementation of the concept of braking with
use of an aluminum skin on the runway surface as a heat sink exist at least in theory.
For example, the aluminum surface could exist over the entire runway for routine use,
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or it could be placed only near the end of the runway, for emergency use, as illustrated
in figure 2. In any application, however, use of the aluminum skin as a heat sink to ab-
sorb part of the kinetic energy of an aircraft would require a large component of slip
between rubber and aluminum. Use of the aluminum skin to absorb all the kinetic energy
in the form of heat would require a slip rate between rubber and aluminum equal to the
ground velocity of the aircraft. Some of the options available at least theoretically for
use singly or in combination follow.

Total slide to a stop. - One of the possible options with the arrangement illustrated
in figure 2 would be a total slide to a stop. Under this option, a pilot's permanent in-
structions might be most simple. If his aircraft while not airborne ever reached the
aluminum-surfaced extension of the runway he should lock all wheels at that instant and
apply to the aluminum surface any auxiliary rubber surfaces that might exist for braking
purposes. This instruction could well substitute for the present-day decision speed V<,
and would more frequently be complied with by the pilot because it would agree rather
than conflict with his survival instinct in cases where frightening malfunction occurs
after the V« speed is reached and before the aircraft is airborne.

The effect of a strong crosswind component should not be a serious deterent to the
use of this option. Figure 3 shows a trajectory determined by numerical integration for
a total slide from 82. 5 meters per second (160 knots) with deceleration of 10. 4 meters
per second squared (1. 4 times gravity) applied at all times exactly in the reverse direc-
tion to the existing velocity. A crosswind component was assumed sufficient to produce
a lateral force equal to one-tenth the aircraft weight. The total forward movement is
247 meters (809 ft). The lateral movement is only 8. 8 meters (29 ft).

Figure 4 illustrates the condition that would exist on the aluminum-surfaced exten-
sion of the runway illustrated in figure 2. The distribution of the heat as roughly 99 per-
cent into the aluminum is based on equation (B14), but with due regard for the fact the
aluminum skin will have an oxide film whose thickness would almost certainly be much
greater than the dimensions of the microscopic asperities in the aluminum surface. In
such a case, with an assumption that the thermal resistance of the oxide film will be
substantially less than of , it can easily be shown that equations (B14) and (B15) will
apply, but with use of the thermal conductivity of aluminum oxide instead of k in the
terms [ka/(ka + kr)]g(y, z, t) and [kr/(kr + ka)]g(y, z, t). The term
ka|3(pa(x,y,z,t)/3xj in equation (B4) then would still use the conductivity of aluminum
k and the partial derivative 3o> (x, y, z, t)/3x as it would exist on the aluminum side ofa a
the interface between aluminum and aluminum oxide.

We will assume the aluminum oxide to be polycrystalline, dense, and at a tempera-
ture between 311 and 478 K (100° and 400° F), with conductivity of about 27. 7 W/(m)(K)
or 16 Btu/(hr)(ft)(°F), (ref. 5). We will take the conductivity of tread rubber as
0. 28 W/(m)(K) or 0. 16 Btu/(hr)(ft)(°F), (ref. 6). Thus, from equation (B14) with the
modified use as just described,

8



dtp (x, y, z, t)
ka —^ = 0. 99 g(y, z, t) + a[<pr(x, y, z, t) - cpa(x, y, z, t)J, x = 0 (4)

U A

Because the same rubber surface is continuously exposed to the frictional heat in the
contact patch, while new aluminum surface is continually entering the patch, the temper-
ature <?r(x, y, z, t) must inevitably rise above <pa(x, y, z, t) so that the term

a far(x, y, z, t) - <Pa(x, y, z, t)] in equation (4) must be positive. The magnitude of a

is unknown. Partly completed investigation leads us to believe that it is high and that
an assumption a(V_(x, y, z, t) - (p0(x, y, z, t)~| ^ 0 would be strongly conservative.u r d J|x=0
The partition of the friction heat with 99 percent into the aluminum is based on equa-
tion (4) with that conservative assumption.

We now wish to estimate the amount of tread rubber that would be destroyed if an
aircraft weighing 90 000 kilograms (200 000 Ib) were stopped from 82. 5 meters per
second (160 knots) in a total slide, with 1 percent of the total friction heat flowing into
the tread rubber. The calculation will be independent of stopping distance because the
aircraft's kinetic energy must be dissipated as heat regardless of that distance. We will
assume an initial tread temperature of 311 K (100° F) and assume that tread rubber will
smear off onto the runway at 478 K (400° F). A close estimate of the temperature at
which tread rubber would smear off cannot be made without actual test. The value of
478 K (400° F) is near the curing temperature in some fast-curing processes (ref. 7).
Nybakken, Staples, and Clark (ref. 8) found that rubber reversion occurred at temper-
atures ranging from 422 to 587 K (300° to 600° F) for various types of elastomers. In
a personal communication those authors observed that the rubber reversion as indicated
by loss of friction coefficient seemed to correlate with smearing. As the decomposition
associated with smearing is a time-consuming process, the value of 478 K (400° F)
seems conservative for the very short time intervals under consideration here. The
specific heat of the rubber will be taken as 1750 J/(kg)(K) or 0. 42 Btu/(lb)(°F), calcu-
lated from values given in reference 9 for 55 parts carbon black and 100 parts natural
rubber. The weight of rubber lost should be

w = 1 /160 x 1. 152 x 5280\2
 x 200 OOP x _1_ x L___ x 0. 01

r 2^ 3600 ) 32.2 778 0. 42 X (400 - 100)

= 23. 1 Ib (6. 55 kg) (5)

Now if we assume a load on the contact patch approximately equal to the air pres-
£*

sure in the tires, say 1. 38x10 newtons per meter squared (200 psi), the total area of
o

contact would be about 0. 6452 meter squared (1000 in. ). With a tread rubber density



of about 1200 kilograms per meter cubed (0. 043 Ib/in. 3), (ref. 6), the loss of 6. 55 kilo-
grams (23.1 Ib) of rubber would reduce the tread thickness in the areas of contact by
about 1. 4 centimeters (0. 54 in.). If the air pressure within the tires were less, the
thickness of rubber lost would be less. Loss of 1. 4 centimeters (0. 54 in. )of tread thick-
ness would blow out tires of some types. However, after blowout the tire on a locked
wheel could still absorb much kinetic energy before it would allow contact between the
wheel flanges and the aluminum runway surface. Also, if a wheel were allowed to rotate
by even as much as one complete revolution during the slide the loss of 6. 55 kilograms
(23. 1 Ib) of rubber should not blow any tire out. The loss of all tires on an airplane
would be a small price to pay for an emergency stop that avoided the wreckage of the
aircraft with possible extensive loss of life. Note that the loss of 6. 55 kilograms
(23.1 Ib) of rubber is a conservative estimate because of the conservatism of the esti-
mate of 1 percent of the total heat into the rubber, because it assumed no aerodynamic
loss of kinetic energy, and because it neglected heat into parts of the tread that did not
reach 478 K (400° F).

The next question we wish to consider relative to use of an aluminum skin as a heat
sink is the ability of such a skin to absorb the heat. Presumably, the temperature
reached by the aluminum surface could not exceed that at which the tread rubber would
smear off, about 478 K (400° F). To what extent the depths of the aluminum skin would
approach that temperature would depend on the length of time interval during which an
element of surface area of the aluminum would be exposed to heat flux (that is, contact
with tread rubber). If an optimum time interval were approached, the surface area of
aluminum needed to absorb the kinetic energy, under the same conditions specified by
equation (5) would be

A = A A60 x 1.152 x 5280\2
 x 200 OOP x _J_ x 1 x 16 x 12

aZ 2 \ 3600 j 32.2 778 400 - 100 0.207 X 62.4 X 2.7

= 5353 ft2 (497 m2) (6)
\

with an assumed aluminum thickness of 1. 6 millimeters (1/16 in.), specific heat of
865 J/(kg)(K) or 0. 207 Btu/(lb)(°F), and specific gravity of 2. 7.

For a stopping distance of 305 meters (1000 ft), as an example, equation (6) would
call for a bearing 1. 63 meters (5. 35 ft) wide (measured at right angles to the direction of
aircraft motion) between rubber and aluminum. The length of uniformly loaded bearing
(measured in the direction of motion) would need to be great enough that the aluminum
skin would be heated to an approximately uniform temperature of 478 K (400° F).

It is known (ref. 10), that substantially uniform temperature will be reached with a
constant heat flux through the aluminum surface if

10



s > i

where K is diffusivity, t is the time interval throughout which the flux exists, and I is
thickness. With diffusivity of 8. 58xlO~5 square meter per second (3. 326 ft /hr) for
aluminum and with I = 1. 6 millimeters (1/16 in.), the criterion of equation (7) calls for

t > 0. 0294 sec (8)

At 82. 5 meters per second (160 knots) the time t = 0. 0294 second would call for a bear-
ing length of

, = 160 X 1. 152 X 5280 x Q Q294 = ? Q3 ft (2 42 m) (9)
D 3600

The loading on the bearing would be

p, = - 20° 00° - = 32. 8 psi (2. 26X105 N/m2) (10)
D 5 . 3 5 X 7 . 9 3 X 1 4 4

Obviously the locked wheels of a conventional aircraft as illustrated in figure 4 could
not provide the total bearing width of 1. 63 meters (5. 35 ft) nor the bearing length of
2. 42 meters (7. 93 ft). But auxiliary braking surfaces would not be out of the question for
emergency stopping. For example, several flat rubber pads totalling 1. 63 meters
(5. 35 ft) in width and 2. 42 meters (7. 93 ft) in length might be provided. The underside of
a conventional bogie could be a flat rubber surface. Under emergency conditions, the
wheels could be partly unloaded and the under surfaces of the bogies allowed to slide on
the aluminum.

The bearing length I, = 2. 42 meters (7. 93 ft) would be required only at 82. 5 meters
per second (160 knots). At all lower speeds during the braking process, the length of the
bearing could be less. Hence, a compromise might be made with a longer braking run
and a smaller length I* . The arrangement of figure 4 would be such a compromise,
with coefficient of friction automatically limited to that which would smear rubber from
the tires until the speed became low enough that smearing would stop. Of course, in the
example cited earlier, the stopping distance would then be greater than 246 meters
(807 ft).

Modified antiskid device. - With a deceleration of 1. 4 times gravity, the aluminum
surface in the locked wheel stop as illustrated in figure 4 would of course get too hot.
However, a modified antiskid device could conceivably control the skid so as to allow the
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1. 4 coefficient for the entire 246 meters (807 ft), letting the aluminum take as much of
the heat as it could and letting conventional brakes take the remainder. The only changes
necessary would be in the antiskid mechanisms. It might be assumed that too much slip
would cause degradation of friction coefficients through production of excessive temper-
atures in the tire-runway interfaces. A decelerometer could be incorporated, which
would be integrated with other parts of the servomechanism in such a manner as to de-
crease the braking torque uniformly on all wheels whenever the decelerating force de-
creased, or to increase the braking torque under the reverse condition. Decreasing
braking torques would allow the angular velocities of the wheels to increase, thus reduc-
ing the slip and reducing the interfacial heating caused by the slip, allowing the coeffi-
cients of friction to recover their higher values. Simultaneously, the antiskid mecha-
nism for any individual wheel could continuously monitor the angular speed of that wheel
relative to the average angular speed of all the other wheels and make minor adjustments
of braking torque on the individual wheel to keep its angular velocity about the same as
for all other wheels.

Possible routine braking without conventional brakes. - A runway could be entirely
covered with a thin layer of aluminum, as in figure 5, and routine braking could be ob-
tained without conventional brakes by yawing of wheels. Auxiliary braking surfaces
would need to be provided as earlier discussed. Except near the ends of the runways,
the aluminum skin could be much thinner than for the emergency stops that might be
necessary near the ends.

In the arrangement shown, optimum cooling by the aluminum would be obtained by
permanent yawing of the bogie, so that trailing wheels would never slide over aluminum
already heated by leading wheels. Moderate yawing of the wheels would produce both
sliding components and rolling components of the wheels. The sliding components would
be in the direction of the axis of each wheel, which would be at right angles to the longi-
tudinal grooves that are standard in the tire treads of jet aircraft, so that the grooves
would provide a maximum scraping effect on a wet runway. The yawing arrangement
shown would balance both lateral components of friction forces and torques about the
vertical axis.

The net braking force should depend primarily on the yaw angle and very little on
the speed, unless the sliding component were great enough to overheat the tire-runway
interface. As reduced speed made possible a more uniformly elevated temperature
throughout the depth of the aluminum skin, the yaw angle could be somewhat increased
without overheating the interface.

In an all-out emergency, use could be made of the arrangement described earlier,
in which the wheels would be unloaded and a thin rubber layer covering the entire under-
side of the bogie would be allowed to bear on the aluminum surface of the runway.
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EFFECTS OF SURFACE COMTAMINAWTS

The effects of various surface contaminants such as oil, grease, various kinds of
dirt, water, snow, and ice must be considered. No definitive tests have been made.
Yet, some pertinent observations and reasonable speculations might well be mentioned.

Effects of Oil, Grease, and Dirt

Good wet coefficient of friction, and to a lesser extent good dry coefficient, require
moderate cleanliness of the aluminum surface. For that reason periodic cleaning would
be required. Tests have not yet been made to determine whether common types of con-
taminant other than oil and grease have appreciable deleterious effect. However, in
tests reported in personal communication by Professor S. K. Clark of the University of
Michigan, any minute film of tread rubber that may have been left on the aluminum sur-
face in the sliding tests did not degrade the coefficient of friction. In simple tests with
small sheets of aluminum, small pieces of rubber, and low normal pressure, we have
found that after the friction coefficient had been destroyed by a drop of oil it could be
restored by wetting the surface with water, sprinkling an ordinary household powder-
type detergent over the surface, light rubbing with a wet cloth for 2 or 3 seconds, and
rinsing with clean water.

Simple tests such as we made for approximate determination of friction coefficient
between a small rubber specimen and a smooth sheet of aluminum can be improvised in
a matter of minutes by any engineer. Such a test is illustrated in sketch (a). To mini-

F

^Tapered point

•Slender rod

Rubber tip
^Aluminum sheet

(a)

mize the effect of gravity, the slender rod may be oriented vertically. It may be tapered
to a point at. the top so that a force F may be applied with a finger tip without applying
appreciable torque. The aluminum sheet may be tilted slowly in a manner to decrease
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the angle /3. The coefficient of sliding friction then, for very light loading and low rate
of slide, will be the cotangent of the angle /3 at which the rubber tip slowly moves on
the aluminum sheet.

Effect of Water

In tests such as just described, with moderately clean aluminum and rubber, the
value of /3 at which slow slippage begins is usually about 45° or less, whether the rub-
ber tip is a pencil eraser, or a piece of tread rubber from either an automobile or air-
craft tire. Such values of /3 indicate a friction coefficient of 1. 0 or greater. The value
of fi is little changed if the test is performed in a heavy rainfall, under a flood of water
from a faucet, or even with the entire arrangement immersed in a tank of water.

Wet tests with an automobile-type tire, but with a bald tread, reported in personal
communication by Professor S. K. Clark of the University of Michigan, have shown a
very low coefficient of friction quite inconsistent with the negligible effect of water just
mentioned. Because of the good wet test results with small pieces of rubber, it is antic-
ipated that tests with a grooved tire tread may show good wet coefficients. With enough
grooves in the tread it should, so far as the rubber-aluminum interface is concerned,
be the equivalent of many small pieces of rubber sliding on the aluminum surface in dif-

: I

ferent relative positions.
Of course tests with higher speeds and greater loads need to be made.
A smooth aluminum surface could not have the sponge-like effect of concrete or

asphalt. It might therefore be hoped that an air jet ahead of a braking tire would be more
effective in improving wet performance with aluminum than with asphalt or concrete.
The absence of the sponge-like surface could conceivably be a great advantage for alu-
minum in a manner that can be verified or disproved only by test. A tread land (contact
surface between grooves or outside of the outermost groove on each side of the tread)
might wipe the macroscopic surface of asphalt or concrete free of water, but cannot wipe
out water that has gone deeply into pores. At high rates of slip, friction heating would
vaporize water within the pores, causing a large fraction of the bearing surface of the
tread to float on a cushion of steam. This effect could not exist with a smooth aluminum
surface.

The phenomenon of hydroplaning might possibly be a most important problem. For
dynamic hydroplaning, we would expect the aluminum surface to be neither better nor
worse than conventional surfaces, given the existence of a layer of water. Viscous hy-
droplaning might tend to be worse with aluminum than with concrete or asphalt because
the porous surface of concrete or asphalt might tend to break up patterns of viscous flow.
On the other hand, the fact that water does not adhere to moderately clean aluminum
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should make continuous drainage of the surface easier and should allow the use of air
jets to combat viscous hydroplaning.

Effect of Snow or Ice

Given an accumulation of snow or ice on top of which an aircraft tire rolls or slides,
the aluminum-surfaced runway would be no worse nor better than existing runways ex-
cept possibly if we are considering the specific implementation in which routine use
would be made of yawed wheels, with conventional brakes eliminated.

Under present conditions runways are often not thoroughly cleaned of snow, so that
aircraft are forced to land on packed snow, or even with patches of ice. Low adhesion
of snow or ice to the aluminum because of the absence of pores should be a distinct ad-
vantage in removal of snow. Blowing, or removal with large rotating brushes, should
be more effective with aluminum than with asphalt or concrete because of the lower
adhesion. Lower adhesion to the aluminum would also make it easier for a sliding tire
to scrape the surface free of snow and to achieve the coefficient of friction that exists
between rubber and aluminum. The degree to which this effect would be possible with
high-pressure aircraft tires could be determined only by test.

Removal of thin residual layers of snow by heating might be economically feasible
if a satisfactory way could be found to distribute the heat uniformly to the surface. For
example, with a 13-millimeter (1/2-in.) layer of snow, a specific gravity of 0.125,
and electric power at 1. 5 cents per kilowatt-hour, the snow could be melted from a
3050-meter (10 000-ft) runway 51 meters (200 ft) wide at a cost of

1 X -L x 200 X 10 000 X 0. 125 X 62. 4 X 144 X —— X 0. 015 = $411
2 12 3413

3
If natural gas were used at 0. 025 cents per cubic meter (70£ per 1000 ft ), with a heat-
ing value of 3. 72X104 joules per meter cubed (1000 Btu/ft3), the cost would be

1 x — x 200 x 10 000 x 0. 125 x 62. 4 x 144 x —?— x —— x 0. 7 = $65. 52
2 12 1000 1000

The problem of uniform distribution of applied heat would be somewhat ameliorated by
the fact that, if unevenness of heating existed, every landing and takeoff of an aircraft
would redistribute some of the snow from the relatively unheated areas into the more
strongly heated areas.
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CONCLUDING REMARKS

The theoretical treatment and preliminary test results that have been presented
here appear to indicate a sufficient probability of success in some of the objectives out-
lined, with at least a possibility of success in others, to justify definitive tests. Those
objectives, in approximately the order of their probabilities of success are as follows:

1. Attainment of a substantially greater braking force than is now possible, perhaps
as great as 1. 4 g, with use of braking equipment of the type now in use, and with a tex-
tured runway surface that exposes tread rubber to small areas of aluminum and small
areas of abrasive material. (Reduced tire wear a possible incidental advantage.)

2. The same as objective 1, but with a runway surface completely covered with a
patterned aluminum sheet.

3. The same as objective 2, but with smooth aluminum.
4. Use of an aluminum skin as a. heat sink, relieving conventional brakes of a sub-

stantial part of the heat load, with result of better braking, less brake wear, and pos-
sibly less tire wear.

5. Use of an aluminum skin as a heat sink for all braking heat, with elimination of
conventional brakes and their maintenance expense, and possibly with reduced tire wear.

The effects of rain water, snow, and ice are yet to be determined. However, rea-
sons are presented to indicate these effects may not be an insurmountable problem.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, November 27, 1972,
501-38.
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APPENDIX A

THEORY OF PARTITION OF CONTACT CONDUCTANCE

Contact conductance a, as the term will be used here, signifies the reciprocal of
the resistance of an interface to the flow of heat across it. According to widely accepted
theory (ref. 11), the reason for existence of finite rather than infinite thermal contact
conductance is that conduction of heat through an interface between two solids is reduced
below the rate that might otherwise exist because firm contact within the interface
occurs only at a relatively few isolated points and the thermal streamlines are conse-
quently crowded together throughout appreciable distances along which streamlines ap-
proach and leave those few isolated points. Consequently, in the neighborhood of the
interface, the capacity of the materials to conduct heat is not efficiently used. The con-
ductivity of the contaminant filling the voids between the areas that are in firm contact
may often be neglected, as will be done here.

This effect is illustrated for two metal blocks in contact in figure 6, in which only
three points of firm contact are shown. Firm contact is prevented elsewhere by crev-
ices, assumed of depth 6j and 62 in blocks 1 and 2, respectively.

If the upper block in figure 6 were replaced by rubber under substantial pressure,
while the lower block remained as a metal, or were replaced by concrete or blacktop,
presumably the rubber would displace into the crevices of the lower block. As a result,
the crowding of streamlines should be eliminated or substantially reduced. However,
even if the surface of the lower block were absolutely flat and smooth, the same effect
might occur due to inclusion of minute bubbles of air or other contaminant.

In figure 7, which will now be used as a basis for derivation of equations, only one
area of firm contact is assumed. It is further assumed that all the thermal streamlines
passing through the total area of the blocks At, and only those streamlines, will pass
through the area of firm contact. The area At at each end of the assembly will be com-
pletely filled with a large number n of streamtubes of which one only, streamtube i, is
shown. The distances L are shown equal and are assumed great enough that the thermal
streamlines will be substantially parallel at the upper and lower ends of the assembly.

The crevice depths 61 and 6« will be assumed equal and, in consequence of this
assumption, flow streamlines will be parallel at the plane of the interface. Actually the
crevice depth 6* should be greater than 69 because the rubber will yield to accommo-
date the contaminant. Assumption of 6j equal to 6« is believed to be conservative for
the purpose of this treatment.

Now, under the conditions specified, after steady state is established, the shapes
and lengths of the n streamtubes in the rubber will be a mirror image of the shapes
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and lengths in the rigid solid. The potential-flow solution for the streamlines under the
steady-state condition is independent of the thermal properties of the material.

The total thermal conductance for all the streamtubes in one of the blocks will be
the sum of the conductances for all of the n streamtubes within that block. The thermal
conductance for streamtube i in the rubber will be

-1
4(1) dsi

-1

(Al)

and in aluminum, for example,

T-i
(A2)

where k and k are the thermal conductivities of rubber and aluminum, A./ \ is the
cross-sectional area of streamtube i at position S- along its length, and &. is the
total length of streamtube i within the rubber or the aluminum. For the present we
ignore the fact that the streamtube on the aluminum side may actually consist of alumi-
num oxide.

Accordingly, the total conductance in the rubber for the area A, will be

K = k >

i=0

1-1
(A3)

and in the aluminum,

K_ =

n

E
i-l

(A4)

But, because the streamline pattern in the aluminum is a mirror image of that in the
rubber, the summations in equations (A3) and (A4) are identical, and
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. (A,,
K ka a

To a close approximation, but not with theoretical exactness, we could write

a = K1 + K1 (A6)

where a is the conventional contact conductance (film coefficient) of the interface. We
will now seek an equation in the same form as equation (A6), which will be theoretically
exact, with use of parameters a and a that will be nearly identical with K andr cL r
K . The theoretical inexactness of equation (A6) is due to the fact that the conventional
contact conductance is the reciprocal of the excess resistance, within the distance 2L
of figure 7, above the resistance that would exist if there were no voids or contaminants
within the interface. Thus, in practice, the contact conductance for both materials to-
gether is calculated from the result of an experimental determination of the actual total
resistance of the assembly. The theoretical total resistance of the assembly that would
be expected for zero contact resistance is easily calculated. The excess of the experi-
mentally determined total resistance over this theoretical total resistance is taken as
the thermal contact resistance. For rubber and aluminum, the contact conductance as
measured is

(A7)
i, \ j. a. f_i

or, from equations (A3), (A4), and (A7),

r _1 / 1\ 1 / iYI~l
a = kVx - LA,"1) + k"1 X - LA,"1 (A8)L r \ L I a \ L/J

where X represents the reciprocal of the summation in equation (A3) or (A4). If we let

X1 = (x - LA^1) (A9)

equation (A8) becomes

a"1 = k^X' + ka
XXT (A10)
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From equation (A10) it is seen that the total contact resistance of can be divided
into two parts, one ascribable to the rubber and the other to the aluminum. Thus, for
the rubber

a;1 = k^X' (All)

and for the aluminum

"a1 = kalx' (A12)

So, from equations (All) and (A12),

-^1 = ̂ : (A13)
aa ka

Also

= aaQ>r (A14)

Thus, if a is measured, a and n may be obtained with the simultaneous equationsr 3.
(A13) and (A14), a fact that will be of only academic interest here, though not so in an-
ticipated future work. Equations (A13) and (A14) will be useful for present purposes in
derivation of a boundary condition governing partition of f rictional heat between a rubber
surface and an aluminum surface on which it slides.

In partial support of the foregoing treatment, we may examine equation (24) in
Chapter 13 of reference 11. (Note that a typographical error exists in that equation,
namely, r\ should have been n. ) That equation, applied to aluminum and rubber and
with neglect of the conductivity of the contaminant, reads as follows

c2

a = (A15)

2
where e is the ratio of the area of hard molecular contact to the area A., n is the
number of areas of hard contact per unit total area, and
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(A16)

For all values of e, 6r, and n, if 6r = 6a, equation (A15) can be converted to the same
form as equation (A10) with X' replaced by a constant (1 - e2)(6 + 0. 23 e/0i)e .

Even if 6^ * 60, we see by inspection of equation (A15) that it will reduce approxi-
P d

mately to the form of equation (A10) if

7 » 18' 9 6max <A17>

where 6_-_-, is 6^ or 60, whichever is larger. In the physical picture (fig. 6), it is
IIlcLA r ci

true that a complete potential flow solution would show many a streamline that would
flow in turn through the stagnation area St*, one of the minute areas of firm contact,
and then through the stagnation area Stg. But for the pattern as it appears in the fig-
ure, such streamlines would represent only a minute fraction of the total heat flow.
Thus, if either 6.. or 69 were greatly increased so that a void would cut deeply into
the area St^ or the area St2, the flow pattern would be but little changed. For two
metals in contact, failure of the criterion (A17) to be satisfied might reasonably be ex-
pected in many cases. But, in the case of rubber in contact with any rigid solid, be-

o

cause of the readiness of rubber to conform, it seems more plausible to expect e /n to
be relatively great.
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APPENDIX B

BOUNDARY CONDITION GOVERNING PARTITION OF FRICTION HEAT

The treatment of the question of the partition of frictionally generated heat here will
be based on an assumption that only negligible heat will be generated by slippage between
rubber and the contaminant or between aluminum and the contaminant that fills the mi-
croscopic voids shown in figure 7. It is assumed that negligible heat will be generated
by slippage between contaminant and contaminant, or by viscous friction within fluid or
plastic contaminant. It is also assumed that negligible heating will be caused by internal
friction of the rubber due, for example, to local stick-slip conditions within the interface
such as might cause cyclical local deformations within the body of the rubber. Although
the discussion will deal specifically with rubber and aluminum, it would have general ap-
plicability to other materials, so long as the conductivities of those materials were great
relative to the conductivities of contaminants and the frictional heat generated within the
contaminants were negligible compared with the frictional heat generated within the
minute interfaces of firm contact between the two basic materials. The fact we may
really be dealing with aluminum oxide will be disregarded for the present.

For simplicity, this treatment will deal with a one-dimensional situation. That is,
we will seek a result that applies, per unit area, to a specific differential area within
the interface Si shown in sketch (b). Also, our result will apply only within a specific

Aluminum

Rubber

(b)

differential time dt. We will designate g as the rate of heat generation within the in-
terface between the rubber and the aluminum. We define q,, and q as rate of heata r
flow into the interface from aluminum and rubber, respectively. We denote the value of
x at the absolute interface as x^ By absolute interface, we mean a plane in which mi-
croscopic or submicroscopic areas of aluminum and rubber surfaces come into hard
atom-to-atom contact. We denote by x the value of x at a plane S0, the closest

do cL

plane to Si and parallel to S^ within the body of the aluminum, at which the heat flow
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streamlines have become substantially uniformly distributed throughout the entire os-
tensible area of the interface. We denote by x the value of x for an analogous planers
S within the body of rubber. Then,

V — V — Vxas - xi - x
rs

We may write two independent expressions for q0, and another pair of independent
cL

equations for qr, as follows,

where k is the thermal conductivity of aluminum, (p = q>(x) is temperature within a
body of material, whether aluminum or rubber, and the subscript as denotes that the
derivative applies at x00 approached from lower values of x.

dS

(B3)

where n as earlier defined applies to conduction of heat from the plane SQ into the
3, a,

plane S., <p is the temperature within plane S0, and <p. is the temperature within
1 clS cL 1

plane S,. (The temperatures of the monomolecular layers of aluminum and rubber ad-
jacent to S= will each be treated as equal to <p.. )

qr = <*r(<Prs - (Pj) (B5)

Notations in equations (B4) and (B5) for rubber are all analogous to those in equations
(B2) and (B3) for aluminum. The signs are opposite in equations (B2) and (B4) because
both q_ and q are defined as flows into plane S. and the derivative in equation (B4)3, r 1
applies to the condition at x _ in the direction of greater values of x.

«-S
Now, because there is zero heat capacity within plane S., the net heat flow into that

plane, including the heat generated within it, must equal zero at all times. Hence,

g + qa + qr = 0 (B6)
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We now have seven equations (A13), (A14), and (B2) to (B6) in nine unknowns,
namely, qa, qp, (3<p/3x)ag, (3(p/3x)rg, aa, orr, <pas, <prg, and <p.. We may reduce
these seven equations to one equation in three unknowns. We now wish to do so in two
ways: (1) to obtain an equation in (3<#/3x)00, or, and a> t and (2) to obtain an equa-

dS do i o

tion in (3(p/3x)rg, <prs, and ^ag.
We observe that only the five equations (B2) to (B6) contain qo and q . We re-a r

duce these five equations to the following three, in which both q0 and q,, are absent:a, r

k
^QQ - (P\ = - — f-^| (B7)

(B8)

=0 (B9)

We now have five simultaneous equations (A13), (A14), and (B7) to (B9) in seven
unknowns, namely, (9<p/3x)ag, (3<p/3x)rg, ora, orr, cpag, cprg, and y^ We observe that
among these five equations only equations (B7) and (B8) contain tp^. Eliminating tp^
between these two equations, we get

(BIO)

We now have only four simultaneous equations, namely, equations (A13), (A14), (B9),
and (BIO). The unknowns a- and a» appear only in equations (A13), (A14), and (BIO)

a, ±

among the remaining four equations. We now eliminate n and a- from these threed, r
equations, getting
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Only two simultaneous equations now remain, namely, equations (B9) and (B11). We now
redefine x to be measured positively in either direction from the plane S^. Then,
eliminating (d<p/dx) from equations (B9) and (Bll) we get

US

<pas) (B12)

Eliminating (3<p/3x)00 from equations (B9) and (Bll) we get
cLo

,. . / k \
O (B13)

Passing now to three physical dimensions, and including time as a variable, we may
rewrite equations (B12) and (B13) as

v > z > * - < P x > v > z > *» x =

and

3cp (x, y, z, t) / k \
-kr — = [ — ]g(y, z, t) + a ftp (x, y, z, t) - <p (x, y, z, t)J, x = 0

•I aY I b- j. lr I L. d. r -I9x \kr + V - (B15)

where y and z are spatial coordinates within the plane S,, <p_(x, y, z,t), and
1 cl

<p (x, y, z, t) are temperatures within or on the surface of aluminum and rubber, respec-
tively, as functions of x, y, z, and t, and g(y, z, t) is the rate of heat generation per
unit area within plane S. as a function of y, z, and t.

Equations (B12) and (B13), or (B14) and (B15), are redundant boundary conditions
that must be satisifed at any time t and in any part of the planes S0, S , and S., whicha r i
may now be treated as all the same plane.

This treatment has used equation (A13), whose derivation neglected conduction of
heat by contaminants that fill the voids between the aluminum and the rubber. However,
it may be noted that equations (B12) and (B13), and hence also equations (B14) and (B15),
are valid even if conduction of heat by the contaminants is not negligible, so long as heat
generation within the contaminants or on their surfaces is negligible.

Figure 8 illustrates the condition with thermal streamlines passing through the con-
taminant. Only one area of hard contact is shown, with all streamlines within regions
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designated A passing through it. Streamlines within the regions designated B and C
pass through the contaminant on either side. A type of symmetry in relation to other
areas of hard contact is assumed such that streamlines at the extreme right and left
sides of the sketch are vertical straight lines.

Now if we consider only the surface area A. as designated in figure 8, and the re-
gions A, remembering that all frictional heat is generated within the area of hard con-
tact, we have exactly the same condition as illustrated in figure 7, but with substitution
of A^ for At- So, if we designate otj as the part of the total contact conductance
provided by the area A. , we may apply equation (B12) in the form

(B16)

Now regions B and C are paths for heat flow parallel to region A. They must
have a total conductance

aBC = a - otf (B17)

As no heat is generated at the interface between the two regions B or between the two
\

regions C, and as steady-state conditions are assumed at all times, a simple steady-
state equation for heat conduction may be written for these regions as

rs-^s) (BIS)
as

Finally, as the expressions on the left sides of equations (B16) and (B18) are paral-
lel flows, they may be added. Hence, from equations (B 16), (B17), and (B 18), we get
equation (B12), the same as for the condition when no heat flow through the contaminant
was assumed. Equation (B13) may also be reproduced in a similar manner.
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Figure 1. - Nature of sliding of free-rolling tire.

-Conventional runway-

305-Meter
(1000-ft) aluminum-
surfaced extension
for locked-wheel
emergency stop

Figure 2. - Aluminum-surfaced extension of runway for locked-wheel stop of aircraft with con-
ventional brakes.
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-Standard runway- -305-Meter (1000-ft) aluminum surface-

-Computed aircraft path
and stopped position
with locked wheels

£
o

Figure 3. - Computed path of aircraft with locked wheels in crosswind. Deceleration, 10.4 meters per second
squared (1.4 x gravity); initial speed, 82.5 meters per second (160 knots); crosswind force, 0.1 x aircraft
weight.

Rubber tire
Locked wheel

1.6-Millimeter
(1/16-in.)
aluminum->.

^Heat into aluminum (100 parts)

Figure 4. - Distribution of flow of heat of friction between aluminum
and rubber.
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Aluminum-surfaced runway

(a) Bogie in unbraked
condition, always
yawed to avoid track-
ing of leading wheels
by trailing wheels.

(b) Bogie moderately
braked by yawed
wheels, partly
rolling, partly
sliding. Directional
control possible. All
torques and forces
balanced except
brake force.

(c) 90° Yaw probably
always undesirable.
No rolling. No
directional control.
Single spot on
tread receives all
heat that flows into
rubber.

Figure 5. - Braking of aircraft bogie by yawing of wheels on aluminum-surfaced runway.

Metal block 1

Metal block 2

Thermal streamlines i

Figure 6. - Illustration of crowding of thermal streamlines near interface
of two metals.
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Figure 7. - Illustration of heat flow through rubber and rigid solid in con-
tact.
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Figure 8. - Thermal streamlines through hard contact area and
through contaminant.
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