8,019 research outputs found
Understanding Legislator Experiences of Family-Friendly Working Practices in Political Institutions
This is a post-peer-review, pre-copy edit version of an article published in Politics and Gender. © 2015, Cambridge University Press
Line-profile tomography of exoplanet transits I: The Doppler shadow of HD 189733b
We present a direct method for isolating the component of the starlight
blocked by a planet as it transits its host star, and apply it to spectra of
the bright transiting planet HD 189733b. We model the global shape of the
stellar cross-correlation function as the convolution of a limb-darkened
rotation profile and a gaussian representing the Doppler core of the average
photospheric line profile. The light blocked by the planet during the transit
is a gaussian of the same intrinsic width, whose trajectory across the line
profile yields a precise measure of the misalignment angle and an independent
measure of v sin I. We show that even when v sin I is less than the width of
the intrinsic line profile, the travelling Doppler "shadow" cast by the planet
creates an identifiable distortion in the line profiles which is amenable to
direct modelling. Direct measurement of the trajectory of the missing starlight
yields self-consistent measures of the projected stellar rotation rate, the
intrinsic width of the mean local photospheric line profile, the projected
spin-orbit misalignment angle, and the system's centre-of-mass velocity.
Combined with the photometric rotation period, the results give a geometrical
measure of the stellar radius which agrees closely with values obtained from
high-precision transit photometry if a small amount of differential rotation is
present in the stellar photosphere.Comment: 8 pages, 5 figures, 2 tables; accepted by MNRA
HATS-1b: The First Transiting Planet Discovered by the HATSouth Survey
We report the discovery of HATS-1b, a transiting extrasolar planet orbiting
the moderately bright V=12.05 G dwarf star GSC 6652-00186, and the first planet
discovered by HATSouth, a global network of autonomous wide-field telescopes.
HATS-1b has a period P~3.4465 d, mass Mp~1.86MJ, and radius Rp~1.30RJ. The host
star has a mass of 0.99Msun, and radius of 1.04Rsun. The discovery light curve
of HATS-1b has near continuous coverage over several multi-day periods,
demonstrating the power of using a global network of telescopes to discover
transiting planets.Comment: Submitted to AJ 10 pages, 5 figures, 6 table
The spin-orbit angle of the transiting hot jupiter CoRoT-1b
We measure the angle between the planetary orbit and the stellar rotation
axis in the transiting planetary system CoRoT-1, with new HIRES/Keck and
FORS/VLT high-accuracy photometry. The data indicate a highly tilted system,
with a projected spin-orbit angle lambda = 77 +- 11 degrees. Systematic
uncertainties in the radial velocity data could cause the actual errors to be
larger by an unknown amount, and this result needs to be confirmed with further
high-accuracy spectroscopic transit measurements.
Spin-orbit alignment has now been measured in a dozen extra-solar planetary
systems, and several show strong misalignment. The first three misaligned
planets were all much more massive than Jupiter and followed eccentric orbits.
CoRoT-1, however, is a jovian-mass close-in planet on a circular orbit. If its
strong misalignment is confirmed, it would break this pattern. The high
occurence of misaligned systems for several types of planets and orbits favours
planet-planet scattering as a mechanism to bring gas giants on very close
orbits.Comment: to appear in in MNRAS letters [5 pages
Discovery and Characterization of Transiting SuperEarths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope
Doppler and transit surveys are finding extrasolar planets of ever smaller
mass and radius, and are now sampling the domain of superEarths (1-3 Earth
radii). Recent results from the Doppler surveys suggest that discovery of a
transiting superEarth in the habitable zone of a lower main sequence star may
be possible. We evaluate the prospects for an all-sky transit survey targeted
to the brightest stars, that would find the most favorable cases for
photometric and spectroscopic characterization using the James Webb Space
Telescope (JWST). We use the proposed Transiting Exoplanet Survey Satellite
(TESS) as representative of an all-sky survey. We couple the simulated TESS
yield to a sensitivity model for the MIRI and NIRSpec instruments on JWST. We
focus on the TESS planets with radii between Earth and Neptune. Our simulations
consider secondary eclipse filter photometry using JWST/MIRI, comparing the 11-
and 15-micron bands to measure CO2 absorption in superEarths, as well as
JWST/NIRSpec spectroscopy of water absorption from 1.7-3.0 microns, and CO2
absorption at 4.3-microns. We project that TESS will discover about eight
nearby habitable transiting superEarths. The principal sources of uncertainty
in the prospects for JWST characterization of habitable superEarths are
superEarth frequency and the nature of superEarth atmospheres. Based on our
estimates of these uncertainties, we project that JWST will be able to measure
the temperature, and identify molecular absorptions (water, CO2) in one to four
nearby habitable TESS superEarths.Comment: accepted for PASP; added discussion and figure for habitable planets;
abridged Abstrac
Twenty-One New Light Curves of OGLE-TR-56b: New System Parameters and Limits on Timing Variations
Although OGLE-TR-56b was the second transiting exoplanet discovered, only one
light curve, observed in 2006, has been published besides the discovery data.
We present twenty-one light curves of nineteen different transits observed
between July 2003 and July 2009 with the Magellan Telescopes and Gemini South.
The combined analysis of the new light curves confirms a slightly inflated
planetary radius relative to model predictions, with R_p = 1.378 +/- 0.090 R_J.
However, the values found for the transit duration, semimajor axis, and
inclination values differ significantly from the previous result, likely due to
systematic errors. The new semimajor axis and inclination, a = 0.01942 +/-
0.00015 AU and i = 73.72 +/- 0.18 degrees, are smaller than previously
reported, while the total duration, T_14 = 7931 +/- 38 s, is 18 minutes longer.
The transit midtimes have errors from 23 s to several minutes, and no evidence
is seen for transit midtime or duration variations. Similarly, no change is
seen in the orbital period, implying a nominal stellar tidal decay factor of
Q_* = 10^7, with a three-sigma lower limit of 10^5.7.Comment: 14 pages, 5 figures, accepted to Ap
Neutron scattering study of spin ordering and stripe pinning in superconducting LaSrCuO
The relationships among charge order, spin fluctuations, and
superconductivity in underdoped cuprates remain controversial. We use neutron
scattering techniques to study these phenomena in
LaSrCuO, a superconductor with a transition temperature
of ~K. At , we find incommensurate spin fluctuations with a
quasielastic energy spectrum and no sign of a gap within the energy range from
0.2 to 15 meV. A weak elastic magnetic component grows below ~K,
consistent with results from local probes. Regarding the atomic lattice, we
have discovered unexpectedly strong fluctuations of the CuO octahedra about
Cu-O bonds, which are associated with inequivalent O sites within the CuO
planes. Furthermore, we observed a weak elastic superlattice peak
that implies a reduced lattice symmetry. The presence of inequivalent O sites
rationalizes various pieces of evidence for charge stripe order in underdoped
\lsco. The coexistence of superconductivity with quasi-static spin-stripe order
suggests the presence of intertwined orders; however, the rotation of the
stripe orientation away from the Cu-O bonds might be connected with evidence
for a finite gap at the nodal points of the superconducting gap function.Comment: 13 pages, 11 figures; accepted versio
Observation of the full 12-hour-long transit of the exoplanet HD80606b. Warm-Spitzer photometry and SOPHIE spectroscopy
We present new observations of a transit of the 111-day-period exoplanet
HD80606b. Using the Spitzer Space Telescope and its IRAC camera on the
post-cryogenic mission, we performed a 19-hour-long photometric observation of
HD80606 that covers the full transit of 13-14 January 2010. We complement this
photometric data by new spectroscopic observations that we simultaneously
performed with SOPHIE at Haute-Provence Observatory. This provides radial
velocity measurements of the first half of the transit that was previously
uncovered with spectroscopy. This new data set allows the parameters of this
singular planetary system to be significantly refined. We obtained a
planet-to-star radius ratio R_p/R_* = 0.1001 +/- 0.0006 that is slightly lower
than the one measured from previous ground observations. We detected a feature
in the Spitzer light curve that could be due to a stellar spot. We also found a
transit timing about 20 minutes earlier than the ephemeris prediction; this
could be caused by actual TTVs due to an additional body in the system or by
underestimated systematic uncertainties. The sky-projected angle between the
spin-axis of HD80606 and the normal to the planetary orbital plane is found to
be lambda = 42 +/- 8 degrees thanks to the fit of the Rossiter-McLaughlin
anomaly. This allows scenarios with aligned spin-orbit to be definitively
rejected. Over the twenty planetary systems with measured spin-orbit angles, a
few of them are misaligned; this is probably the signature of two different
evolution scenarios for misaligned and aligned systems, depending if they
experienced or not gravitational interaction with a third body. As in the case
of HD80606b, most of the planetary systems including a massive planet are
tilted; this could be the signature of a separate evolution scenario for
massive planets in comparison with Jupiter-mass planets.Comment: 14 pages, 9 figures, 2 tables, accepted for publication in A&
WASP-43b: The closest-orbiting hot Jupiter
We report the discovery of WASP-43b, a hot Jupiter transiting a K7V star
every 0.81 d. At 0.6-Msun the host star has the lowest mass of any star hosting
a hot Jupiter. It also shows a 15.6-d rotation period. The planet has a mass of
1.8 Mjup, a radius of 0.9 Rjup, and with a semi-major axis of only 0.014 AU has
the smallest orbital distance of any known hot Jupiter. The discovery of such a
planet around a K7V star shows that planets with apparently short remaining
lifetimes owing to tidal decay of the orbit are also found around stars with
deep convection zones.Comment: 4 page
- …