261 research outputs found
Traffic Instabilities in Self-Organized Pedestrian Crowds
In human crowds as well as in many animal societies, local interactions among
individuals often give rise to self-organized collective organizations that
offer functional benefits to the group. For instance, flows of pedestrians
moving in opposite directions spontaneously segregate into lanes of uniform
walking directions. This phenomenon is often referred to as a smart collective
pattern, as it increases the traffic efficiency with no need of external
control. However, the functional benefits of this emergent organization have
never been experimentally measured, and the underlying behavioral mechanisms
are poorly understood. In this work, we have studied this phenomenon under
controlled laboratory conditions. We found that the traffic segregation
exhibits structural instabilities characterized by the alternation of organized
and disorganized states, where the lifetime of well-organized clusters of
pedestrians follow a stretched exponential relaxation process. Further analysis
show that the inter-pedestrian variability of comfortable walking speeds is a
key variable at the origin of the observed traffic perturbations. We show that
the collective benefit of the emerging pattern is maximized when all
pedestrians walk at the average speed of the group. In practice, however, local
interactions between slow- and fast-walking pedestrians trigger global
breakdowns of organization, which reduce the collective and the individual
payoff provided by the traffic segregation. This work is a step ahead toward
the understanding of traffic self-organization in crowds, which turns out to be
modulated by complex behavioral mechanisms that do not always maximize the
group's benefits. The quantitative understanding of crowd behaviors opens the
way for designing bottom-up management strategies bound to promote the
emergence of efficient collective behaviors in crowds.Comment: Article published in PLoS Computational biology. Freely available
here:
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.100244
An integration of enhanced social force and crowd control models for high-density crowd simulation
Social force model is one of the well-known approaches that can successfully simulate pedestrians’ movements realistically. However, it is not suitable to simulate high-density crowd movement realistically due to the model having only three basic crowd characteristics which are goal, attraction, and repulsion. Therefore, it does not satisfy the high-density crowd condition which is complex yet unique, due to its capacity, density, and various demographic backgrounds of the agents. Thus, this research proposes a model that improves the social force model by introducing four new characteristics which are gender, walking speed, intention outlook, and grouping to make simulations more realistic. Besides, the high-density crowd introduces irregular behaviours in the crowd flow, which is stopping motion within the crowd. To handle these scenarios, another model has been proposed that controls each agent with two different states: walking and stopping. Furthermore, the stopping behaviour was categorized into a slow stop and sudden stop. Both of these proposed models were integrated to form a high-density crowd simulation framework. The framework has been validated by using the comparison method and fundamental diagram method. Based on the simulation of 45,000 agents, it shows that the proposed framework has a more accurate average walking speed (0.36 m/s) compared to the conventional social force model (0.61 m/s). Both of these results are compared to the real-world data which is 0.3267 m/s. The findings of this research will contribute to the simulation activities of pedestrians in a highly dense population
Microtome-integrated microscope system for high sensitivity tracking of in-resin fluorescence in blocks and ultrathin sections for correlative microscopy
Many areas of biological research demand the combined use of different imaging modalities to cover a wide range of magnifications and measurements or to place fluorescent patterns into an ultrastructural context. A technically difficult problem is the efficient specimen transfer between different imaging modalities without losing the coordinates of the regions-of-interest (ROI). Here, we report a new and highly sensitive integrated system that combines a custom designed microscope with an ultramicrotome for in-resin-fluorescence detection in blocks, ribbons and sections on EM-grids. Although operating with long-distance lenses, this system achieves a very high light sensitivity. Our instrumental set-up and operating workflow are designed to investigate rare events in large tissue volumes. Applications range from studies of individual immune, stem and cancer cells to the investigation of non-uniform subcellular processes. As a use case, we present the ultrastructure of a single membrane repair patch on a muscle fiber in intact muscle in a whole animal context
A hierarchy of heuristic-based models of crowd dynamics
International audienceWe derive a hierarchy of kinetic and macroscopic models from a noisy variant of the heuristic behavioral Individual-Based Model of Moussaid et al, PNAS 2011, where the pedestrians are supposed to have constant speeds. This IBM supposes that the pedestrians seek the best compromise between navigation towards their target and collisions avoidance. We first propose a kinetic model for the probability distribution function of the pedestrians. Then, we derive fluid models and propose three different closure relations. The first two closures assume that the velocity distribution functions are either a Dirac delta or a von Mises-Fisher distribution respectively. The third closure results from a hydrodynamic limit associated to a Local Thermodynamical Equilibrium. We develop an analogy between this equilibrium and Nash equilibia in a game theoretic framework. In each case, we discuss the features of the models and their suitability for practical use
Collaborative annotation of genes and proteins between UniProtKB/Swiss-Prot and dictyBase
UniProtKB/Swiss-Prot, a curated protein database, and dictyBase, the Model Organism Database for Dictyostelium discoideum, have established a collaboration to improve data sharing. One of the major steps in this effort was the ‘Dicty annotation marathon’, a week-long exercise with 30 annotators aimed at achieving a major increase in the number of D. discoideum proteins represented in UniProtKB/Swiss-Prot. The marathon led to the annotation of over 1000 D. discoideum proteins in UniProtKB/Swiss-Prot. Concomitantly, there were a large number of updates in dictyBase concerning gene symbols, protein names and gene models. This exercise demonstrates how UniProtKB/Swiss-Prot can work in very close cooperation with model organism databases and how the annotation of proteins can be accelerated through those collaborations
Channel-Forming Activities in the Glycosomal Fraction from the Bloodstream Form of Trypanosoma brucei
Background: Glycosomes are a specialized form of peroxisomes (microbodies) present in unicellular eukaryotes that belong to the Kinetoplastea order, such as Trypanosoma and Leishmania species, parasitic protists causing severe diseases of livestock and humans in subtropical and tropical countries. The organelles harbour most enzymes of the glycolytic pathway that is responsible for substrate-level ATP production in the cell. Glycolysis is essential for bloodstream-form Trypanosoma brucei and enzymes comprising this pathway have been validated as drug targets. Glycosomes are surrounded by a single membrane. How glycolytic metabolites are transported across the glycosomal membrane is unclear. Methods/Principal Findings: We hypothesized that glycosomal membrane, similarly to membranes of yeast and mammalian peroxisomes, contains channel-forming proteins involved in the selective transfer of metabolites. To verify this prediction, we isolated a glycosomal fraction from bloodstream-form T.brucei and reconstituted solubilized membrane proteins into planar lipid bilayers. The electrophysiological characteristics of the channels were studied using multiple channel recording and single channel analysis. Three main channel-forming activities were detected with current amplitudes 70–80 pA, 20–25 pA, and 8–11 pA, respectively (holding potential +10 mV and 3.0 M KCl as an electrolyte). All channels were in fully open state in a range of voltages 6150 mV and showed no sub-conductance transitions. The channel with current amplitude 20–25 pA is anion-selective (P K+/P Cl2,0.31), while the other two types of channels are slightl
Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas
<p>Abstract</p> <p>Background</p> <p>Glioblastoma is the most lethal primary malignant brain tumor. Although considerable progress has been made in the treatment of this aggressive tumor, the clinical outcome for patients remains poor. Histone deacetylases (HDACs) are recognized as promising targets for cancer treatment. In the past several years, HDAC inhibitors (HDACis) have been used as radiosensitizers in glioblastoma treatment. However, no study has demonstrated the status of global <it>HDAC </it>expression in gliomas and its possible correlation to the use of HDACis. The purpose of this study was to evaluate and compare mRNA and protein levels of class I, II and IV of HDACs in low grade and high grade astrocytomas and normal brain tissue and to correlate the findings with the malignancy in astrocytomas.</p> <p>Methods</p> <p>Forty-three microdissected patient tumor samples were evaluated. The histopathologic diagnoses were 20 low-grade gliomas (13 grade I and 7 grade II) and 23 high-grade gliomas (5 grade III and 18 glioblastomas). Eleven normal cerebral tissue samples were also analyzed (54 total samples analyzed). mRNA expression of class I, II, and IV <it>HDACs </it>was studied by quantitative real-time polymerase chain reaction and normalized to the housekeeping gene <it>β-glucuronidase</it>. Protein levels were evaluated by western blotting.</p> <p>Results</p> <p>We found that mRNA levels of class II and IV <it>HDACs </it>were downregulated in glioblastomas compared to low-grade astrocytomas and normal brain tissue (7 in 8 genes, <it>p </it>< 0.05). The protein levels of class II HDAC9 were also lower in high-grade astrocytomas than in low-grade astrocytomas and normal brain tissue. Additionally, we found that histone H3 (but not histone H4) was more acetylated in glioblastomas than normal brain tissue.</p> <p>Conclusion</p> <p>Our study establishes a negative correlation between <it>HDAC </it>gene expression and the glioma grade suggesting that class II and IV <it>HDACs </it>might play an important role in glioma malignancy. Evaluation of histone acetylation levels showed that histone H3 is more acetylated in glioblastomas than normal brain tissue confirming the downregulation of <it>HDAC </it>mRNA in glioblastomas.</p
- …