115 research outputs found

    Limitations and improvements of the energy balance closure with reference to experimental data measured over a maize field

    Get PDF
    The use of energy fluxes data to validate land surface models requires that energy balance closure conservation is satisfied, but usually this condition is not verified when the available energy is bigger than the sum of turbulent vertical fluxes. In this work, a comprehensive evaluation of energy balance closure problems is performed on a 2012 data set from Livraga obtained by a micrometeorological eddy covariance station located in a maize field in the Po Valley. Energy balance closure is calculated by statistical regression of turbulent energy fluxes and soil heat flux against available energy. Generally, the results indicate a lack of closure with a mean imbalance in the order of 20%. Storage terms are the main reason for the unclosed energy balance but also the turbulent mixing conditions play a fundamental role in reliable turbulent flux estimations. Recently introduced in literature, the energy balance problem has been studied as a scale problem. A representative source area for each flux of the energy balance has been analyzed and the closure has been performed in function of turbulent flux footprint areas. Surface heterogeneity and seasonality effects have been studied to 336 understand the influence of canopy growth on the energy balance closure. High frequency data have been used to calculate co-spectral and ogive functions, which suggest that an averaging period of 30 min may miss temporal scales that contribute to the turbulent fluxes. Finally, latent and sensible heat random error estimations are computed to give information about the measurement system and turbulence transport deficiencies

    Thermal poling of glass modified by femtosecond irradiation

    No full text
    Thermal poling of silica glass modified by femtosecond laser irradiation is demonstrated. Increase of second-harmonic generation in the irradiated regions is observed. This enhancement is interpreted in terms of structural modifications in silica glass that make the poling process more efficient. Evidence of a change in the distribution of the electrostatic field frozen in glass during poling is obtained. This technique is used for (2) grating fabrication

    Definizione di alcuni termini in uso nella cartografia dei depositi quaternari continentali in ambito alpino

    Get PDF
    In the past decade a new approach to cartography and mapping of Quaternary continental deposits allowed the abandonment of the now obsolete "classical model" by Penck & Br\ufcckner (1909), which was based on four major glaciations. The new approach utilizes stratigraphic units, which are bounded by discontinuities and defined by following glacial and/or hydrographic basins, framed within a relative chronological scale (Allostratigraphic Units and Unconformity-bounded stratigraphic units). The present paper, which synthesizes different approaches to Quaternary continental stratigraphy, proposes a definition of the terminology used in the Alpine area, in order to make clear the significance of each term, and assess its proper use. The terms Last Glacial Maximum (LGM), post-glacial, and Pre-LGM are here discussed in detail. The term LGM indicates the last local glacial maximum, without any reference to stratigraphic and chronostratigraphic units. The term post-glacial is used to indicate the events which followed the last local glacial expansion. The term Pre-LGM indicates the events that preceded the last local glacial maximum. Furthermore, we here discuss some of the problems of classification that arise following the use of the new terminology, and suggest possible cartographic solutions.In questi anni nuovi approcci metodologici di rilevamento e cartografia dei depositi quaternari continentali hanno consentito l\u2019abbandono del \u201cmodello classico\u201d introdotto da Penck e Br\ufcckner (1909) basato sulle quattro glaciazioni, a favore di un approccio che utilizza unit\ue0 stratigrafiche delimitate da discontinuit\ue0 e definite secondo ambiti bacinali (idrografici e/o glaciali), inserite in una scala cronologica relativa (Unit\ue0 Allostratigrafiche e Unit\ue0 stratigrafiche a limiti inconformi). In questa nota, frutto del confronto tra diversi autori, vengono proposte le definizioni dei termini utilizzati in ambito alpino secondo tale approccio, al fine di chiarirne il significato e precisarne l\u2019utilizzo. In particolare vengono discussi i termini: LGM (Last Glacial Maximum), postglaciale e Pre\u2013LGM. Il termine LGM indica l'ultimo massimo glaciale locale, senza riferimento alcuno ad unit\ue0 cronologiche o stratigrafiche. Col termine postglaciale si vuole indicare l\u2019insieme di eventi che si succedono a partire dal termine dell\u2019ultima massima espansione glaciale locale, mentre Pre-LGM indica l\u2019insieme degli eventi che la precedono. Contestualmente alla spiegazione della terminologia introdotta, vengono anche brevemente affrontate le problematiche che ne derivano relativamente alla classificazione di depositi, delle unit\ue0 ed alle conseguenti ricadute cartografiche, proponendo alcune possibili soluzioni

    HERASE: monitorare l’erosione del suolo nelle Alpi con tecniche Geomatiche

    Get PDF
    In Italia ci sono circa 4 milioni di ettari di terreno agricolo e forestale a rischio di erosione o frana e recenti stime del Ministero dell’Ambiente (2013) indicano che sarebbero necessari 40 miliardi di Euro per ridurre il rischio dovuto alla perdita di suolo sul territorio nazionale. Il progetto Hydrogeological modeling for Erosion Risk Assessment from SpacE (HERASE), finanziato da Fondazione Cariplo (Grant Nr.2016-0768), affronta questo tema nel bacino camuno del fiume Oglio, un’area alpina dell’Italia settentrionale. Scopo di HERASE è mettere a punto una metodologia di analisi basato sul Revised Universal Soil Loss Equation (RUSLE), reso dinamico dall’uso di mappe di copertura del suolo multi-temporali, per evidenziare le zone potenzialmente soggette a fenomeni erosivi e le dinamiche dei cambiamenti del territorio capaci di influenzarne l’entità. Misure in situ di erosione realizzate con un simulatore di pioggia permetteranno la caratterizzazione idrologica di zone rappresentative e la taratura del modello. Infine, le previsioni restituite dai modelli climatici saranno utilizzate per delineare possibili scenari di rischio futuro, in un contesto che vede il territorio montano, e quello alpino in particolare, soggetto a sempre più evidenti cambiamenti climatici. Il presente lavoro riporta alcuni risultati preliminari del progetto HERASE ottenuti sul sotto-bacino del torrente Arcanello (circa 21 km2), dove la stima preliminare dell’erosione è pari a 7,61 [t ha-1 a-1]. Tale risultato è concorde con il valore medio annuo a livello nazionale

    A Rede Sementes da Agroecologia no Paraná (ReSA).

    Get PDF
    Edição dos anais do VI Congresso Latino-Americano (CLAA), X Congresso Brasileiro (CBA), V Seminário do DF e Entorno (SEMDF), 12-15 setembro de 2017, a Brasília, DF, Brasil

    Oxygen as a Driver of Early Arthropod Micro-Benthos Evolution

    Get PDF
    BACKGROUND: We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. METHODOLOGY/PRINCIPAL FINDINGS: The PO(2) of modern normoxic seawater is 21 kPa (air-equilibrated water), a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO(2) of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O(2). Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O(2) levels. The PO(2) of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O(2). Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian) oxygen-levels that increased the PO(2) gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O(2). Ostracods became the numerically dominant arthropod micro-benthos of the Phanerozoic. CONCLUSIONS/SIGNIFICANCE: Our work has implications from an evolutionary context for understanding how oxygen-level in marine ecosystems drives behaviour

    sFDvent: A global trait database for deep‐sea hydrothermal‐vent fauna

    Get PDF
    Motivation: Traits are increasingly being used to quantify global biodiversity patterns, with trait databases growing in size and number, across diverse taxa. Despite grow‐ ing interest in a trait‐based approach to the biodiversity of the deep sea, where the impacts of human activities (including seabed mining) accelerate, there is no single re‐ pository for species traits for deep‐sea chemosynthesis‐based ecosystems, including hydrothermal vents. Using an international, collaborative approach, we have compiled the first global‐scale trait database for deep‐sea hydrothermal‐vent fauna – sFD‐ vent (sDiv‐funded trait database for the Functional Diversity of vents). We formed a funded working group to select traits appropriate to: (a) capture the performance of vent species and their influence on ecosystem processes, and (b) compare trait‐based diversity in different ecosystems. Forty contributors, representing expertise across most known hydrothermal‐vent systems and taxa, scored species traits using online collaborative tools and shared workspaces. Here, we characterise the sFDvent da‐ tabase, describe our approach, and evaluate its scope. Finally, we compare the sFD‐ vent database to similar databases from shallow‐marine and terrestrial ecosystems to highlight how the sFDvent database can inform cross‐ecosystem comparisons. We also make the sFDvent database publicly available online by assigning a persistent, unique DOI. Main types of variable contained: Six hundred and forty‐six vent species names, associated location information (33 regions), and scores for 13 traits (in categories: community structure, generalist/specialist, geographic distribution, habitat use, life history, mobility, species associations, symbiont, and trophic structure). Contributor IDs, certainty scores, and references are also provided. Spatial location and grain: Global coverage (grain size: ocean basin), spanning eight ocean basins, including vents on 12 mid‐ocean ridges and 6 back‐arc spreading centres. Time period and grain: sFDvent includes information on deep‐sea vent species, and associated taxonomic updates, since they were first discovered in 1977. Time is not recorded. The database will be updated every 5 years. Major taxa and level of measurement: Deep‐sea hydrothermal‐vent fauna with spe‐ cies‐level identification present or in progress. Software format: .csv and MS Excel (.xlsx).This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

    The aquaculture supply chain in the time of covid-19 pandemic: vulnerability, resilience, solutions and priorities at the global scale

    Get PDF
    The COVID-19 global pandemic has had severe, unpredictable and synchronous impacts on all levels of perishable food supply chains (PFSC), across multiple sectors and spatial scales. Aquaculture plays a vital and rapidly expanding role in food security, in some cases overtaking wild caught fisheries in the production of high-quality animal protein in this PFSC. We performed a rapid global assessment to evaluate the effects of the COVID-19 pandemic and related emerging control measures on the aquaculture supply chain. Socio-economic effects of the pandemic were analysed by surveying the perceptions of stakeholders, who were asked to describe potential supply-side disruption, vulnerabilities and resilience patterns along the production pipeline with four main supply chain components: a) hatchery, b) production/processing, c) distribution/logistics and d) market. We also assessed different farming strategies, comparing land- vs. sea-based systems; extensive vs. intensive methods; and with and without integrated multi-trophic aquaculture, IMTA. In addition to evaluating levels and sources of economic distress, interviewees were asked to identify mitigation solutions adopted at local / internal (i.e., farm-site) scales, and to express their preference on national / external scale mitigation measures among a set of a priori options. Survey responses identified the potential causes of disruption, ripple effects, sources of food insecurity, and socio-economic conflicts. They also pointed to various levels of mitigation strategies. The collated evidence represents a first baseline useful to address future disaster-driven responses, to reinforce the resilience of the sector and to facilitate the design reconstruction plans and mitigation measures, such as financial aid strategies.publishe

    The synergistic impacts of anthropogenic stressors and COVID-19 on aquaculture: a current global perspective

    Get PDF
    The rapid, global spread of COVID-19, and the measures intended to limit or slow its propagation, are having major impacts on diverse sectors of society. Notably, these impacts are occurring in the context of other anthropogenic-driven threats including global climate change. Both anthropogenic stressors and the COVID-19 pandemic represent significant economic challenges to aquaculture systems across the globe, threatening the supply chain of one of the most important sources of animal protein, with potential disproportionate impacts on vulnerable communities. A web survey was conducted in 47 countries in the midst of the COVID-19 pandemic to assess how aquaculture activities have been affected by the pandemic, and to explore how these impacts compare to those from climate change. A positive correlation between the effects of the two categories of drivers was detected, but analysis suggests that the pandemic and the anthropogenic stressors affect different parts of the supply chain. The immediate measurable reported losses varied with aquaculture typology (land vs. marine, and intensive vs. extensive). A comparably lower impact on farmers reporting the use of integrated multitrophic aquaculture (IMTA) methods suggests that IMTA might enhance resilience to multiple stressors by providing different market options under the COVID-19 pandemic. Results emphasize the importance of assessing detrimental effects of COVID-19 under a multiple stressor lens, focusing on areas that have already locally experienced economic loss due to anthropogenic stressors in the last decade. Holistic policies that simultaneously address other ongoing anthropogenic stressors, rather than focusing solely on the acute impacts of COVID-19, are needed to maximize the long-term resilience of the aquaculture sector.publishe
    corecore