
                                                                    

University of Dundee

Citizen science supporting agricultural monitoring with hundreds of low-cost sensors
in comparison to remote sensing data
Corbari, Chiara; Paciolla, N.; Ben Charfi, I.; Skokovic, D.; Sobrino, J. A.; Woods, M.

DOI:
10.1080/22797254.2022.2084643

Publication date:
2022

Licence:
CC BY

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Corbari, C., Paciolla, N., Ben Charfi, I., Skokovic, D., Sobrino, J. A., & Woods, M. (2022). Citizen science
supporting agricultural monitoring with hundreds of low-cost sensors in comparison to remote sensing data.
European Journal of Remote Sensing, 55(1), 388-408. https://doi.org/10.1080/22797254.2022.2084643

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. Oct. 2022

https://doi.org/10.1080/22797254.2022.2084643
https://discovery.dundee.ac.uk/en/publications/d57c7ef1-46b1-4c19-acc2-2591d087bb1d
https://doi.org/10.1080/22797254.2022.2084643


Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tejr20

European Journal of Remote Sensing

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tejr20

Citizen science supporting agricultural monitoring
with hundreds of low-cost sensors in comparison
to remote sensing data

Chiara Corbari, N. Paciolla, I. Ben Charfi, D. Skokovic, J.A. Sobrino & M.
Woods

To cite this article: Chiara Corbari, N. Paciolla, I. Ben Charfi, D. Skokovic, J.A. Sobrino & M.
Woods (2022) Citizen science supporting agricultural monitoring with hundreds of low-cost sensors
in comparison to remote sensing data, European Journal of Remote Sensing, 55:1, 388-408, DOI:
10.1080/22797254.2022.2084643

To link to this article:  https://doi.org/10.1080/22797254.2022.2084643

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 13 Jun 2022.

Submit your article to this journal 

Article views: 449

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tejr20
https://www.tandfonline.com/loi/tejr20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/22797254.2022.2084643
https://doi.org/10.1080/22797254.2022.2084643
https://www.tandfonline.com/action/authorSubmission?journalCode=tejr20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tejr20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/22797254.2022.2084643
https://www.tandfonline.com/doi/mlt/10.1080/22797254.2022.2084643
http://crossmark.crossref.org/dialog/?doi=10.1080/22797254.2022.2084643&domain=pdf&date_stamp=2022-06-13
http://crossmark.crossref.org/dialog/?doi=10.1080/22797254.2022.2084643&domain=pdf&date_stamp=2022-06-13


RESEARCH ARTICLE

Citizen science supporting agricultural monitoring with hundreds of low-cost 
sensors in comparison to remote sensing data
Chiara Corbaria, N. Paciollaa, I. Ben Charfia, D. Skokovicb, J.A. Sobrinob and M. Woodsc

aDepartment of Civil and Environmental engineering, Politecnico di Milano, Milan, Italy; bImage Processing Laboratory (IPL), University of 
Valencia, Valencia, Spain; cDuncan of Jordanstone College of Art & Design, University of Dundee, Dundee, UK

ABSTRACT

The ever-increasing importance of irrigation monitoring and water-use optimization in 
agriculture calls for new solutions for a more complete understanding of the plant growth 
dynamic and the agricultural water cycle. In this study, the fitness for use of the Flower Power 
low-cost sensors, not designed for scientific applications, is evaluated in an integrated agri
cultural monitoring context in contrast to freely available satellite information from Landsat 8, 
Sentinel 1 and 2. Measurements of air temperature, solar radiation, leaf area index (LAI) and soil 
moisture are considered. 456 sensors have been deployed in the Capitanata Irrigation 
Consortium (Italy) as part of the GROW Observatory project with local farmers collaborating 
as citizen scientists to either deploy these sensors, monitor the environmental variables and 
control irrigation management. The main results are: (i) positive agreement between Flower 
Power sensors and high-quality professional stations for measurements of meteorological 
variables (5.6°C RMSE for Air Temperature); (ii) acceptable estimates of crops LAI 
(RMSE = 0.55 m2 m−2) and mixed ones of Surface Soil Moisture (m = 0.75, R2 = 0.23) from 
Flower Power sensors in respect to different satellite data; (iii) potentiality of these sensors 
combined with remote sensing in providing suitable tools for irrigation management.
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Introduction

Agriculture is the largest water user with about 70% of 
total freshwater consumption, which is projected to 
further increase due to climate change, population 
growth but also more demanding lifestyles and diets 
(Alexandratos & Bruinsma, 2012). Indeed, the average 
irrigation for a crop season in some regions can be at 
least twice the amount of rainfall (Kenawy & McCabe, 
2016). Irrigated areas, although being about 2% of the 
global land area (17% of cultivated area) (Food and 
Agriculture Organization of the United Nations and 
(FAO), 2016), alter the land water cycle by locally 
increasing evapotranspiration and soil moisture, as 
infiltration and at catchment scale modifying the 
groundwater recharge and greatly reducing runoff, 
especially the peaks (Oki & Kanae, 2006).

Soil moisture information is then of fundamental 
importance for irrigation monitoring as well as for 
improving water management and irrigation efficiency. 
This may be achieved by combining ground (Choi et al., 
2016; Ramadan et al., 2018) and satellite information 
with hydrological and crop models. For example, 
Phillips et al. (2014) analyzed ground measured and 
modelled soil moisture data at field scale for improving 
a decision support system; while Allen et al. (1998) 
computes the crops water requirements based on 
a crop coefficient. Calera Belmonte et al. (2005) 

improves this method by using satellite information 
for improving the crop coefficient definition and thus 
the evapotranspiration. Corbari et al. (2019) merged an 
energy-water balance model with meteorological fore
cast for irrigation scheduling. These models should be 
considered with their own limitations and potentialities, 
related mainly to ground sensors unavailability over 
large areas (Doraiswamy et al., 2004), or satellite data 
algorithms validation (Bastiaanssen & Bos, 1999) as for 
agro-hydrological models which usually need many 
parameters (Dong & Zhao, 2019; Sun & Ren, 2014).

A high spatial resolution of water distribution is 
then needed to achieve a sustainable data-driven man
agement of water resources and this may be achieved 
with alternative methods for data collection (Barker 
et al., 2020; Mishra & Coulibaly, 2009; Ochoa-Tocachi 
et al., 2018), as well as for hydrological and agronomic 
models (Corbari et al., 2020).

Usually, traditional long-term hydrological monitor
ing networks are quite expensive in terms of instrumen
tations as well as maintenance by expert technicians 
(Mazzoleni et al., 2017; Mishra & Coulibaly, 2009), lead
ing to few and sparse in time and space data collection. 
Remote sensing data are more and more available, but 
still limited by their spatial and temporal resolution or by 
the accuracy of the algorithms for variables retrievals 
(Bauer-Marschallinger et al., 2019; Skokovic et al., 2017a).
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The involvement of citizens as scientists is then 
a possibility to enlarge the monitoring networks to 
gain new scientific knowledge on the water cycle and 
related ecosystem services (Ajates et al., 2020), based 
on low-cost instruments that can therefore be handled 
in large quantities and are in turn easy to use (Hadj- 
Hammou et al., 2017), allowing increasing social 
involvement. In the last years, many citizen science 
activities have grown covering different topics of 
environmental monitoring from abiotic environment 
(Pocock et al., 2017), climate monitoring (Gharesifard 
et al., 2017), as well as river flood risk management 
(Ferri et al., 2020). However, the quality and reliability 
of the data collected by these citizen observatories is an 
open issue for scientific use while a comprehensive 
analysis is missing leading to some concerns in the 
acceptance in the research community (Freitag et al., 
2016). For agricultural monitoring, fewer applications 
are available referring in particular to soil moisture 
monitoring and other related variable as surface air 
temperature (AT) or radiation (Aragó Galindo et al., 
2012; Michels et al., 2020; Vellidis et al., 2016).

The International Soil Moisture Network (ISMN, 
https://ismn.geo.tuwien.ac.at/) (W. A. Dorigo et al., 
2011; W. Dorigo et al., 2021) is trying to overcome 
these limitations by collecting and harmonizing the 
available SM measurements globally from both tradi
tional networks as citizen science ones. Remote sen
sing data could help in enlarging the soil moisture 
knowledge globally, while addressing different issues 
related to spatial and temporal resolutions, sensing 
techniques and retrieval algorithms accuracy or soil 
depth. In fact, active microwave sensors can reach 
1 km of spatial resolution, as Sentinel1 data, but with 
the low temporal resolution of at least only four days 
(Bauer-Marschallinger et al., 2019), leading to the 
possibility of missing irrigation or rainfall events; 
while on the contrary passive microwave data, as 
SMOS or SMAP, have a daily revisit time but with 
a low spatial resolution of about 25 km (Entekhabi 
et al., 2014; Kerr et al., 2010). Active data on the 
contrary may pose different challenges related to the 
effect on the retrieval algorithms of complex rough
ness and vegetation backscatter on vegetated areas, 
which could be relevant in irrigated crops areas. So 
that ground soil moisture sensors are therefore funda
mental for satellite calibration and validation.

Another important parameter in agricultural mon
itoring is the vegetation growth and its status. This 
may be monitored with the Leaf area index (LAI), 
which is the total green leaf area over the pixel area, 
and it’s a critical parameter which is regulating the 
plant photosynthesis and respiration (Watson, 1947). 
This may be measured by traditional ground sampling 
based on time consuming and expensive field cam
paigns with direct (from harvested leaves) (Bréda, 
2003) or indirect methods based on empirical 

relationships with, for example, tree diameters 
(Gower et al., 1999), or with canopy gap fraction 
according to the Beer-Lambert law (Nilson, 1971). 
LAI might also be monitored by remote sensing data 
usually through empirical algorithms with canopy 
reflectance or vegetation indices (VIs; Fang et al., 
2019; Gower et al., 1999; Zucaro 2014), with the 
main change of the non-general relationship between 
LAI and reflectance for all vegetation types leading to 
some uncertainties (Garrigues et al., 2008).

The main objective of this paper is to evaluate the 
performances of low-cost sensors not designed for 
scientific use, the Flower Power (Parrot, https://www. 
parrot.com/), for an integrated agricultural monitor
ing, in respect to freely available satellite information. 
Specific sub-objectives are also identified: (i) to evalu
ate the agreement among ground meteorological mea
surements of air temperature (AT) and incoming 
shortwave radiation (Rs) from the Flower Power and 
high-quality professional stations, (ii) to evaluate the 
possibility to infer crops LAI from covered Flower 
Power sensors and compared against satellite LAI 
estimates, (iii) to compute the agreement and accuracy 
of soil moisture data from both Flower Power sensors 
and satellite Sentinel-1, (iv) to infer potential and 
actual evapotranspiration (ETP and ET, respectively), 
(v) to evaluate the suitability for irrigation manage
ment, computing the irrigation water needs (IWN) 
and irrigation deficit (ID).

This builds upon the GROW Observatory 
(GROW), a community-based environmental moni
toring and information system, (GROW; https://gro 
wobservatory.org/), whose sensors network was 
deployed at scale in focus areas, identified as GROW 
Places, across Europe. Its aims were threefold, to vali
date and scale a meet a key scientific objective to 
ground-truth Sentinel 1 products using in-situ crowd
sourced soil moisture data, to take a participant-cent 
ered approach to monitor soil and land in collabora
tion with citizens, and for empowered citizens and 
scientists to take up these data and insights achieve 
a more sustainable agriculture (Ajates et al., 2020; 
Woods et al., 2020). In particular, the 456 sensors 
deployed in the GROW Place at Capitanata 
Irrigation Consortium in South of Italy during July 
to October 2019, as part of the GROW Observatory, 
will be analyzed.

Materials

Capitanata area

The Capitanata Irrigation Consortium, specifically the 
Sud Fortore district, is located in Southern Italy in the 
Puglia region (Figure 1) and it is an intensive culti
vated area, mainly devoted to durum wheat and toma
toes during the spring-summer season and fresh 
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vegetables in winter. It covers an area of about 
65ʹ000 hectares of which only 45% is irrigated through 
the Consortium water distribution network 
(56,700 ha), while the remaining areas are irrigated 
with private wells (INEA,). The role of irrigation is 
crucial in fact the mean irrigation volume for the 
irrigation season from April to October is about 
600 mm, while the seasonal rainfall precipitation 
amount to 150 mm. Daily irrigation volumes mea
sured in the main aqueduct are available from 2013 
to 2018 and are provided by the Capitanata Irrigation 
consortium. During the different years, the volumes 
range over the whole season between 6 and 4.6 107 m3 

with a mean value of 5.3 107 m3.

Low cost sensors

456 Flower Power low-cost on-ground sensors have 
been deployed in different fields either with bare soil 
or vegetation covered: mainly with tomatoes and 
asparagus but also with Cabbage, Celery, Fennel, Pak- 
Choi, Salad, Spinach. In Figure 1, the locations of the 
sensors are shown in the different fields and farms, 
along with the land cover of Autumn crops (mostly 
vegetated area). Two main groups of sensors can be 
identified and named Azienda and Onoranza, accord
ing to farmers naming. In fact, different farmers have 
been involved as citizen scientists to either deploy 
these sensors, monitor the environmental variables 
and control irrigation management.

The instruments are Flower Power from the French 
company Parrot SA, (https://support.parrot.com/us/ 
support/products/parrot-flower-power), which are 
able to measure time series data collected at 15- 
minutes intervals: soil moisture (SM) (m3 m−3, at 
a maximum depth of 5 cm), air temperature (°C, few 
centimetres above ground surface) and solar 

illuminance (lux, measured in proximity of the air 
temperature sensor). The sensors characteristics are 
reported in details in Table 1. In particular, soil moist
ure is measured with a capacitance probe with two 
rods of 10 cm, which allows measuring the dielectric 
permittivity that is influenced by SM. Soil moisture 
accuracy has been tested through laboratory experi
ments by Xaver et al. (2020) showing a good accuracy 
of the sensors, except that for dry conditions of silty 
clay soils. Light intensity is measured by a sensor in the 
wavelength spectrum between 400 and 700 nm. The 
thermometer is positioned inside the plastic cover of 
the sensor. The data are stored on the Flower Power 
sensors and then downloaded by smartphones App via 
Bluetooth. In Figure 1, a picture of a Flower Power 
sensor is shown. Each sensor costs about 70 euro.

Data has been collected from the Parrot sensors 
which were deployed to gather continuous data 
between 22 July and 20 October 2019 (91 days). 
Among the 456 sensors, 69 were not operational due 
to lack of Bluetooth connection signal, discharged 
batteries after few hours or sensor breakage due to 
agricultural operations in the fields with tractors. 
Among the remaining 387 effectively active sensors 
during this monitoring period, the data collection 
was intermittent. Two major periods without any 
data can be identified in early August and in the first 
half of September, as detailed in Figure 2a. This lack of 
data is referable to the method of saving data on the 
internal memory of the sensor or to the data transfer 
between the sensor and the cloud database (e.g. this 
issue was not known a priori) For the other days, the 
average number of sensors collecting data was 102. 
Evaluating the data wealth for each sensor 
(Figure 2b), the average number of days with data 
for a given sensor was 18. A non-negligible number 
of sensors (76 sensors, or 20% of the active ones) 

Figure 1. Capitanata Irrigation Consortium area within Italy. The autumn crop types and the installed sensors distribution are 
detailed in the different farms.
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provided data for only one day, and a considerable 
group (158 sensors, 41% of the active ones) provided 
at most 20 days with data. The most prolific sensor was 
D363, placed in a Celery field in the DEF2 sector, with 
61 days-worth of data.

In Figure 3, sensors distribution among the differ
ent fields is detailed. Two main surveys classified the 
different fields, one in July (at the start of the monitor
ing) and the other in October (at the end). The pre
dominance of bare-soil fields is testified by the high 
amount of Bare Soil (BS) sensors in the July classifica
tion. Most of these, however, were part of a vegetated 
field by October. Tomato sensors, on the other hand, 
were the only group to shift from a vegetated field to 
a bare-soil one during Summer, because of the tomato 
harvest in August. The sensors installed in the vege
tated fields are positioned in such a way that the 
measurement of illuminance is not influenced by the 

presence of the plant itself and at the same time some 
sensors are positioned under the crop’s foliage, so that 
the perceived illuminance is influenced by the shade of 
the plant. Davis meteorological station.

Meteorological data were also available from 
2 meteorological stations located in a 10 km range 
from the Flower Power sensors (Figure 1). The sta
tions are Davis Vantage Pro2 Plus (https://www.davi 
sinstruments.com/) equipped to measure air tempera
ture (°C) and relative air humidity (%) at 2 m height 
(as standard WMO), incoming shortwave solar radia
tion (Wm−2). The data accuracy and measurements 
range are reported in Table 1. The data were available 
every five minutes for all the monitoring period.

Remote sensing data

Vegetation indices
Data linked to vegetation were extracted by the use of 
Visible Near Infrared and Shortwave Infrared bands of 
Landsat8 and Sentinel2 satellites, to infer different vege
tation indices (VIs). Concretely, the bands near to 
660 nm and 850 nm were used for vegetation index 
estimation and bands near to 1600 nm and 850 nm for 
vegetation water content. All bands were atmospheri
cally corrected by the use of 6S software (Vermote et al., 
1997) in order to estimate the surface reflectance.

Figure 2. Number of active sensors for each day of the monitoring period (a). Sensors classified by number of days with data (b).

Figure 3. Sensors distribution among the crop type categories in the July and October patterns.

Table 1. Flower power and Davis measurements 
characteristics.

Variable Units Range Accuracy

Parrot Air temperature °C −5 to +50°C 1.5°C
Light intensity Lux 0.1 to 200 lux 15%
Soil moisture Vol % 0 to 50% 3%

Davis Air temperature C −40 to + 65°C 0.1°C
Solar radiation W m−2 0 to 1800 W/m2 1 W/m2

Rainfall mm 0 to 6553 mm 0.2 mm
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The Fractional Vegetation Cover (Fcover) identifies 
the fraction of the total pixel that is covered by the 
vegetation and can be estimated through NDVI, 
according to Gutman and Ignatov (1998), as: 

Fcover ¼
NDVI � NDVIS

NDVIV � NDVIS
(1) 

where NDVIs and NDVIv are representative NDVI 
values for bare soil and green vegetation pixels, respec
tively. These values were estimated as 0.15 and 0.9, 
respectively, based on images NDVI histograms. With 
Fcover, LAI can be calculated as (Choudhury, 1987): 

LAI ¼ �
ln 1 � Fcoverð Þ

k φð Þ
(2) 

where k is the light extinction coefficient for a given 
solar zenith angle (φ). The light extinction coefficient 
is a measure of attenuation of radiation in the canopy 
which, in our case, it was set equal to 0.5.

Additionally, to NDVI, Soil Adjusted Vegetation 
Index (SAVI) was also computed in this work in 
order to reduce the soil background effect (Huete, 
1988). 

SAVI ¼
b850 � b660

b850 þ b660 þ L

� �

1þ Lð Þ (3) 

where the sub-index of b refers to bands wavelength, 
in nanometers, and L accounts for first-order soil 
background variations and in our case is computed 
as the average vegetation cover of the image which 
vary from 1 (image full covered by vegetation pixels) 
to 0 (image full covered by bare soil pixels).

Moisture Stress Index (MSI) and Normalized 
Difference Water Index (NDWI) are two basic indices 
for estimation of vegetation water content. Equations 
for both are: 

MSI ¼ b1600 � b850ð Þ (4) 

NDWI ¼
b850 � b1600ð Þ

b850 þ b1600ð Þ
(5) 

While the near infrared band is nearly unaffected by 
changing water content, shortwave infrared band 
reflectance increases or decreases with the decrease 
or increase of water leaves content, respectively.

Soil moisture
Soil moisture data (5–7 cm soil depth) were obtained 
at 1 km spatial resolution from the Copernicus pro
duct of Surface Soil Moisture Version 1 product 
(SSM1km) retrieved from Sentinel-1 C-band SAR 
backscatter after geo-correction and radiometric cali
bration (Bauer-Marschallinger et al., 2018). The out
put product is an index in percent of saturation, with 
1°/112 nominal resolution. Overpasses from the 
Sentinel-1 are programmed every day, but the revisit 

time is longer, being in the case study area of about 3– 
4 days. A number of 26 images were available during 
the study period (20 July–20 October 2019). The data, 
provided in the form of saturation percentage, were 
converted to volumetric ratio (same unit as the Parrot 
SM) employing the known saturation and residual 
water content values for the area.

Land surface temperature
LST can be calculated through different techniques, 
which require the use of one, two or more thermal 
bands of one sensor. In our case, two techniques have 
been used: Single Channel (SC) algorithm and Split 
Window (SW) algorithm that were applied to 
Landsat-7 Enhanced Thematic Mapper Plus (ETM+) 
and Landsat-8 Thermal InfraRed Sensor (TIRS). For 
ETM+ and TIRS, LST has been retrieved following the 
procedure explained in Skokovic et al. (2017a) for SC 
algorithm and Jimenez-Munoz et al. (2014) for SW 
algorithm, respectively. The SC equation follows as: 

Ts ¼
T2

sen
bγLsen

1
ε

Ψ1Lsen þ Ψ2ð Þ þ Ψ3

� �

þ Tsen �
T2

sen
bγ

(6) 

where Tsen is the at-sensor brightness temperature, Ts 
is the LST,ε is the emissivity, bγ is equal to 1277 K, and 
Ψ1, Ψ2 and Ψ3 are related to the atmospheric para
meters of transmissivity and upward and downward 
radiances.

The SW equation used for TIRS bands is pre
sented as: 

TS ¼ Ti þ a0 � a1 Ti � Tj
� �

þ a2 Ti � Tj
� �2

þ a3 þ a4wð Þ 1 � εð Þ þ a5 þ a6wð ÞΔε (7) 

where Ti and Tj are the at-sensor brightness tempera
tures at the SW bands i and j, ε is the average emissiv
ity of I and j, Δε is the difference, w is the total 
atmospheric water vapor content (g·cm−2) and a0, a1, 
a2, a3, a4, a5 and a6 are the SW coefficients with values 
of 16.40, −0.268, 1.378, 0.183, 54.30, −2.238 and 
−129.20, respectively.

For both equations, the atmospheric parameters 
and water vapor content, required as inputs, were 
estimated by MODTRAN 5.0 radiative transfer code 
to a forecasted European Center for Medium-Range 
Weather Forecasts (ECMWF) atmospheric profiles 
included in the Sentinel-3 data. For the emissivity 
inputs, also required in both equations, NDVI 
Thresholds Method (NDVI-THM) has been applied 
following the original equations presented in Sobrino 
et al. (2008). Finally, in order to disaggregate the ETM 
+ and TIRS pixels from its original spatial resolution 
of 60 m and 100 m, respectively, to a resolution of 
30 m, the Nearest Neighbour Temperature Sharpening 
(NNTS) methodology has been used as it is described 

392 C. CORBARI ET AL.



in Skokovic (2017b). The whole procedure of LST 
retrieval at a spatial resolution of 30 m is described 
in Corbari et al. (2020).

Methods

The implemented methodology is divided in the differ
ent steps which might be grouped in verification ana
lyses and operative irrigation management. The first 
group of activities includes: (1) retrieval of radiation 
data from Parrot sensors and its agreement with that 
measured by professional sensors, (2) estimates of leaf 
area index from Parrot sensors and agreement evalua
tion with satellite LAI, (3) agreement between Parrot 
measure of air temperature and comparison with both 
AT measured data from professional sensors and LST 
from satellite data, (4) comparison between Parrot soil 
moisture and satellite SM estimates. While the second 
group of analyses encompasses: (1) computation of 
potential and effective evapotranspiration, (2) estimates 
of the evapotranspiration water deficit and the crop 
irrigation water needs.

Retrieval robustness is quantified through the eva
luation of the root mean square error (RMSE), which 
is computed as follows: 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 Si � Mið Þ
2

n

s

(8) 

where S i is the ith Parrot-measured variable, Mi is the 
ith measured variable by profession stations or satel
lite, n is the sample size. These statistical values are 
computed knowing that the lower the RMSE is, the 
lower the error. In addition, the linear regression 
between the S i and Mi is also verified and the angular 
coefficient (m) and the coefficient of determination 
(R2) are computed.

Each sensor provides the amount of solar radiation it 
receives in the form of illuminance, expressed in lux 
(lx = lumen m−2). This parameter identifies the total 
luminous flux impacting on a surface per unit area. The 
conversion into a standard radiation term (expressed in 
W m−2) is mediated through the luminosity function y 
(λ), which is a wavelength-weighted relation between 
Watts and Lumens that accounts for the human eye 
sensibility to different energy wavelengths. In particu
lar, the human eye is most sensitive to monochromatic 
radiation at 555 nm, and is unable to perceive energy 
outside the bounds of the visible electromagnetic spec
trum (380–400 nm up to 700–780 nm). This means that 
the Lumen-to-Watt (Lux-to-Watt/m2) conversion is 
not stable across all the wavelengths of the visible spec
trum, but shows a peak at 555 nm (where 1 Watt = 683 
Lumens) and has proportionally lower values for other 
wavelengths. The Lumen-to-Watt conversion factor (χ) 
is obtained as follows: 

χ ¼ φ ò
1

0
y λð ÞΓ λð Þdλ (9) 

Where φ is the peak-sensitivity conversion coefficient 
(683 lm/W) and Γ(λ) is the relative solar radiative 
spectrum, normalized over the whole short-wave 
energy. The luminosity function data for the analysis 
has been elaborated by the Commission Internationale 
de l’Eclairage (CIE; Sliney, 2007) and the solar spec
trum data is the Air Mass (AM1.5) G173 Global Tilt 
data from the American Society for Testing of 
Materials (ASTM). This procedure, following in the 
footsteps of Michael et al. (2020), provides 
a conversion factor of 116 lx to 1 W/m2.

Before applying this conversion to the whole data
set, a more empirical approach has been taken. 
Illuminance data has been compared with shortwave 
radiation measurements from the standard Davis 
meteorological station. This comparison has been 
restricted with two conditions: only non-cloudy days, 
classified according to the information from the 
meteorological station, are considered, and nocturnal 
data, identified by the sensors minima (0.1 lx for the 
Parrot sensors and 0 W m−2 for the Davis station), are 
excluded. From this comparison, an illuminance-to- 
radiation conversion coefficient can be obtained, with 
varying results among all the sensors. The comparison 
of such empirically-retrieved information with the 
theoretically correct approach described above will 
be also discussed.

Leaf area index

By establishing a comparison between contemporary 
measurements of illuminance from sensors in vege
tated and bare-soil fields, a dampening ratio can be 
obtained. As the vegetation shadow reduces the per
ceived illuminance, this ratio is strictly correlated to 
the Leaf Area Index parameter. According to the the
ory of Campbell and Norman (1998), the dampening 
ratio of the solar radiation (and, by extension, of the 
illuminance) has been directly linked to the leaf den
sity in the arboreal medium through the expression: 

LAI ¼ �
ln Iveg

Ibare

� �

K φð Þ
(10) 

K φð Þ ¼
def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ tan φð Þ2
q

xþ 1:774 xþ 1:182ð Þ
� 0:733 (11) 

Where Iveg identifies the solar illuminance for 
a vegetated sensor and Ibare the same parameter for 
a bare-soil sensor. The beam extinction coefficient 
K depends on the solar zenith angle (φ) and the leaf 
spatial distribution index (x). The latter is a parameter 
accounting for the presence of any preferential 
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direction for the leaves spatial distribution: a unitary 
value indicates a spherical (thus isotropic) distribu
tion, with no preferential directions. The computed 
Leaf Area Index is defined as the one-faced green leaf 
area per unit ground area, directly connected to leaf 
density.

Effective and potential evapotranspiration

The potential evapotranspiration has been computed 
according to the general micro-meteorological condi
tions of the area, using the meteorological data mea
sured from the Parrot sensors as well as gathered from 
the Davis station in place. The Priestley–Taylor equa
tion (Priestley & Taylor, 1972) was used: 

ETP ¼ 1:3
Δ

Δþ γð Þ
RS (12) 

where ETP is in mm, Δ = d(esat)/dT (Pa K−1), which is 
the slope of the curve relating saturated water vapor 
pressure esat (Pa) to temperature T (°C), γ (Pa K−1) is 
the psychrometric constant, Rs is the incoming short- 
wave radiation (W m−2).

The actual evapotranspiration has then been 
obtained by constraining the potential evapotranspira
tion with the soil moisture availability of each single 
field. ET is computed by multiplying the ETP for 
a reduction coefficient: the β and α functions for 
vegetated and bare-soil fields, respectively. In particu
lar, the β function (Kutílek & Nielsen, 1994) is based 
on the concept that when the soil moisture value is 
lower than the field capacity (FC), the vegetation 
stoma begins to close and transpiration decreases sig
nificantly, until it stops completely for soil moisture 
values less than or equal to the wilting point (WP). 
The equation is:

β SMð Þ ¼

0;
SM� WP
FC� WP ;

1;

8
<

:

for SM �WP
for WP< SM< FC
for SM � FC

ð13Þ

The α function for bare-soil fields is expressed as 
(Parlange et al., 1999): 

α ¼ 0:082 � SMþ 9:173 � SM2 � 9:815 � SM3 (14) 

Irrigation water needs and irrigation deficit

Two operational products for irrigation management 
have finally been developed from the data gathered by 
the sensors.

The irrigation deficit (ID) was computed portray
ing the amount of water required by the plants to 
transpire at full potential. This ID can be computed 
for each sensor by evaluating the potential to actual 
evapotranspiration deficit: 

ID ¼ ETP � ET (15) 

The irrigation water needs (IWN) for each specific 
crop were evaluated according to a crop stress thresh
old (stress), defined following the methodology of 
Allen et al. (1998) in the FAO-56 paper. This stress 
threshold might be used as an indication of a correct 
or excessive irrigation but also, if available in real-time 
application, to trigger irrigation. The threshold was 
computed considering the different crop types and 
the soil characteristics, as: 

stress threshold ¼ FC � p � FC � WPð Þ (16) 

where p is a reduction coefficient depending on the 
crop and climatic parameters. p is defined by Allen 
et al. (1998) for several crops (http://www.fao.org/3/ 
x0490e/x0490e00.htm#Contents). The factor p nor
mally varies from 0.30 for shallow rooted plants at 
high rates of ET (> 8 mm d−1) to 0.70 for deep rooted 
plants at low rates of ET (< 3 mm d−1). A value of 0.50 
for p is commonly used for many crops. The p factor is 
usually corrected for climatic data (Allen et al., 1998).

Results

Air temperature

The air temperature measurements collected by the 
sensors have been compared with those of the Davis 
stations, associating each sensor to the nearest station. 
An example is shown in Figure 4. Sensor G222 
(Figure 4a) is placed in a permanently-bare soil field. 
The Parrot air temperature (PAT), although similar to 
the station air temperature (SAT) in the nocturnal 
hours, attains much higher values during the day, 
reaching temperatures 10–15°C warmer. The main rea
son for this may be the measurement height: while PAT 
is collected a few centimetres above ground, SAT is 
measured 2 metres above ground. This means that, 
although conceptually different, PAT has much in com
mon with satellite land surface temperature, which is 
displayed in the same Figure 4, even though displaying 
higher values especially in the summer. Another issue 
could be the overheating of the plastic cover of the 
sensor, as pointed out by Xaver et al. (2020). Other 
three sensors are displayed, with different behaviors. 
Sensor GO190 (Figure 4b) is in a Tomato field: the 
shadow from the plants causes the PAT to be much 
closer to the SAT during August; after the harvest, the 
PAT measured in the now-bare field grows again higher 
than SAT. Sensor D363 (Figure 4c) displays an opposite 
trend. Placed in a Celery field, the PAT values display 
the bare-soil trend during summer, when the crop is 
still virtually nonexistent; as it grows, PAT converges to 
SAT under the influence of vegetation. Finally, Sensor 
G150 (Figure 4d), placed in an Asparagus field, shows 
a more regular trend, similar to that of the bare-soil 

394 C. CORBARI ET AL.

http://www.fao.org/3/x0490e/x0490e00.htm#Contents
http://www.fao.org/3/x0490e/x0490e00.htm#Contents


sensor (Figure 4a). This can be motivated by the scarce 
vegetation density of the Asparagus crop, that poorly 
affects the downwelling radiation.

To understand the general behavior, all the sensors 
data were compared with both the Davis station air 
temperature (Figure 5a) and the high-resolution 
(30 m) LST data retrieved from Landsat 7 and 8 
(Figure 5b). The comparison was done considering 
data every 15 minutes, with the Davis stations data 
are averaged at this frequency from their original 
sampling time of 5 minutes. This provides a high 
number of PAT-SAT couples (402,487) and, for 
a better representation, the scatterplot has been 
replaced by a density plot. The PAT overestimation 
already discussed for Figure 4 is clearly visible in the 
right-hand side of the density plot. Accounting for all 
PAT-SAT couples, the PAT overestimation can on 
average be set at +78%, although the moderate regres
sion coefficient (R2 = 0.78) displays the wide variety of 
different behaviors among the sensors. Isolating night- 
time sampled data, the fitting between the two datasets 
improves consistently (R2 = 0.80 and m = 0.91).

Figure 5b identifies the comparison between 
PATs and satellite LST. In this case, the satellite 
overpass time (around 11:25 a.m.) is a major con
straint, reducing the number of PAT-LST couples 
to 1017. There appears to be a certain correlation 
between the two datasets, as shown by the close-to- 
one slope coefficient of the interpolation 
(m = 1.02). However, the data seems poorly clus
tered around the interpolation line, as testified by 
the moderate R2 value (0.44).

To try and discern the specifics of this compar
ison, sensors were divided according to the vegeta
tion type. The sensor-to-satellite coupling statistics 
are detailed in Table 2. As a reference, the sample 
dimension (number of sensor-to-satellite couplings) 
is also shown. Focusing on the most numerous 
crop types, bare soil, celery and tomatoes provide, 
on average, a negative sensor-to-satellite bias, while 
asparagus, fennel and trees show a positive bias. 
However, as the correlation coefficients show, no 
category overcomes the 0.5 mark, indicating a high 
sample dispersion.

Figure 4. Time series of air temperature from Parrot sensors (Orange dots) and Davis station (black line), together with land surface 
temperature from Landsat 7 and 8 satellites (green circles). BS is bare soil, TOM tomatoes, CEL celery, ASP is asparagus.
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Radiation

The comparison between the converted Parrot in 
incoming shortwave solar radiation with the 
shortwave radiation from the Davis Station, in 
order to be meaningful, has been regulated remov
ing three data categories: cloudy days data, data 
from sensors under the vegetation and nocturnal 
data. An example of this comparison is provided 
in Figure 6a for Sensor G67, placed in a bare soil 
field. The resulting conversion coefficient 
(m = 5.69), obtained with a strong accuracy 

(R2 = 0.96), is a characteristic of this particular 
sensor. In fact, other sensors show similar values, 
although each specific to its own data.

The wide variety of illuminance-to-radiation 
couplings is mapped in Figure 6b. The black diag
onal line identifies the 5:1 ratio between radiation 
and illuminance, with most of the sensors crowd
ing the area immediately above, as suggested by 
the 5.41 average value. Another great group is the 
one on the left-hand side of the plot, with very 
low illuminance values corresponding to high 
radiation values collected by the station. These 

Figure 5. Comparison between Parrot air temperature (PAT) and station air temperature (SAT) (a) or Landsat 7/8 land surface 
temperature (LST) (b).

Table 2. Correlation information for the sensor-to-satellite couplings sorted by crop type.
Crop Couples R2 Avg. Bias Crop Couples R2 Avg. Bias

All sensors 1017 0.44 −0.7°C Celery 60 0.46 −1.4°C
Bare Soil 551 0.45 −0.4°C Fennel 24 0.48 +0.1°C
Asparagus 165 0.44 +1.1°C Tomato 179 0.39 −3.4°C
Cabbage 7 0.20 −0.9°C Trees 15 0.32 +1.4°C

Figure 6. Sensor-to-Station comparison between illuminance and radiation. Example on a bare soil sensor (a) and global density 
plot for all the sensors (b).
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couplings are mainly referred to vegetated sensors, 
where the dampening effect differentiates the two 
parameters. Among the 110 sensors providing sui
table data for the comparison, the average conver
sion coefficient is 5.41, with a low variation 
coefficient (6.4%). These conversion values 
(5.41 W/m2 to 1 lux) are quite different from the 
116 lux to 1 W/m2 theoretically expected (Michael 
et al., 2020). However, if the peak-sensitivity con
version coefficient φ of Eq. 8 is neglected, re- 
adjusting that equation provides a final conversion 
coefficient equal to the solution of the integral, 
that is, 5.91 lux to 1 W/m2, which is quite close 
to what has been found empirically. This suggests 
that what is displayed by the Flower Power sensor, 
more than “actual” solar illuminance, is rather 
“peak-corrected” incoming radiation, obtained 
from the actual illuminance using only the peak- 
sensitivity coefficient and neglecting the role of the 
luminosity function.

Leaf area index estimates

Leaf area index, as obtained following the procedure 
detailed in Section 3.2, were compared against esti
mates from Sentinel 2 satellite data. Contrasting 
results in term of agreement are found. Figure 7a 
shows a good correlation with a positive trend, as the 
field is shifting from an empty bare soil to a vegetated 
pattern (cabbage). This evolution is evident both in the 
sensor and satellite retrievals, both in general trend 
and in actual LAI values. On the contrary, Figure 7b 
provides as example the results for sensor GO186 with 
an opposite negative behavior, due to its positioning in 
an asparagus field, with a reduction of the vegetation 
coverage in the monitoring period. The general 
decreasing satellite LAI trend and its actual values 
result well-interpreted by the sensor.

On the other hand, Figure 8 displays two examples 
of the satellite-sensor comparison with a low correla
tion. Figure 8a involves another sensor (G71) placed in 
an asparagus field: but while the sensor registers LAI 
values around 1 m2 m−2, its corresponding satellite 

pixel featured practically null values (0.019 m2 m−2 at 
most). Looking more in details the LAI satellite image 
(Figure 8b), it clearly appears how the Parrot sensor 
placement, in the angle of the asparagus field, creates 
a conflict with its covering pixel. In fact, the sensor 
shares the pixel space with the neighbouring, mainly 
bare soil area, affecting the overall LAI value. As 
a reference, the neighbouring pixel (just 9 m west of 
the sensor) has been added to the plot in Figure 8a, 
showing a LAI series much more in tune with that 
obtained from the sensor. The same concept applies 
for sensor G122 (Figure 8c), placed in an originally 
bare soil field, later cultivated with celery. Also in this 
case, the sensor-to-satellite divergence is due to the 
fact that the sensor has been placed to the corner of the 
crop field and, once again, the neighboring satellite 
pixel shows a LAI time series more in line with what 
the sensor perceives.

Overall, isolating the sensors without field-border 
problems such as those detailed above, the agreement 
between sensor and satellite is acceptable, with a low 
average RMSE value (0.55 m2 m−2) and varying per
formances across the sensors (R2 = 0.34).

Soil moisture measurements

Comparison with SM satellite data

The whole Parrot SM dataset was compared 
against satellite data obtained associating each 
sensor to the Copernicus SSM1km product pixel, 
nominally 1 km2 large. In the first panel of 
Figure 9, the overall scatterplot, involving all sen
sors, is shown. Although the interpolation slope is 
not far from unity (m = 0.75), it is clear how the 
heterogeneity of each Copernicus cells clashes 
with the degree of detail provided by the Parrot 
sensors (R2 = 0.23). In the other panels of 
Figure 9, the same data is provided filtered out 
by land cover, starting from the bare soil category 
and covering all crops found in the area. The 
correspondence varies a lot from category to cate
gory with m values ranging between 0.84 for the 
bare soil field to 0.50 for chard crops, confirming 

Figure 7. Two examples of successful comparison between sensor-computed LAI and data gathered from satellite. BS is bare soil, 
CAB cabbage, ASP is Asparagus.
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the difficulties of microwave radar data in retriev
ing soil moisture in highly vegetated fields 
(Giacomelli et al., 1995). Low values of R2, never 
higher than 0.31, are obtained for all the fields.

To better understand also the spatial resolution 
issue of the satellite images, in Figure 10, one of the 
Copernicus SM1km pixels has been selected for 
a focus, as it covers 56 different Parrot sensors over 
the total period of observation. The time series of 
Copernicus SM, completed by the dataset uncertainty 
in the shaded area, is shown in Figure 10a together 

with the SM distribution of all the active Parrot sen
sors in the same pixel. A similar behavior in the overall 
trend is observable among the two datasets detecting 
the SM increases for the rainfall events, while high 
differences in the absolute values are detected, show
ing a RMSE of 0.116, a slope of the interpolation line 
of 0.76 with a R2 of 0.12. This may be explained by the 
different land cover conditions of the considered satel
lite pixel (July, Figure 10b and October, Figure 10c) of 
the observation period, which describe a particularly 
bare pixel.

Figure 8. Two examples of problematic comparison between sensor-computed LAI and data gathered from satellite: (a) and (b) for 
an asparagus (ASP) sensor the time series and the map, (c) and (d) for a celery (CEL) field.

Figure 9. Parrot to Copernicus soil moisture comparison for different crops categories. Number of couples (n), determination 
coefficient (R2) and interpolation slope (m) are provided for each plot.
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Comparison with satellite water stress indices
Parrot soil moisture data were then compared to 
some satellite-derived vegetation indices, in order 
to ascertain their sensibility to soil moisture varia
tions. To this aim, Fcover, MSAVI, MSI, NDVI, 
NDWI obtained from Sentinel 2 and Landsat 8 
satellite images are compared with Parrot SM 
data at pixel scale. The comparison between sen
sors and vegetation indices is explored in detail 
for three different sensors in Figure 11, showing 
mainly that these indices seem to evolve with the 
crop status of the area. Sensor 8360 (Figure 11a), 
located in a celery field, sees a progressive increase 
in irrigation during summer to prepare the soil for 
the plant growth with high value of SM. All the 
VIs are progressively increasing as well with the 
crop development, but remain quite clustered 
around similar values. The same happens with an 
asparagus sensor (F070, Figure 11b) and a tomato 
one (849E, Figure 11c). The VIs do not show 
particularly sharp changes in low-SSM phases, 
corresponding to stress conditions for the crop. 
Generally, low temporal frequency in the VIs 
data is poorly compatible with the rhythms of 
plant water stress and irrigation for most crops, 
as can be seen particularly well for the celery and 
tomato sensors.

An overall analysis on the SM-VIs relation was 
performed through a cross-correlation between the 
different datasets, as shown in Table 3, considering 
all the Parrot sensors. The strong relation between 
the different VIs is evident in the high correlation 
(or anti-correlation, in the case of MSI) values, 
while all of them display a close-to-zero correlation 
against SM.

Effective and potential evapotranspiration

Even though the potential evapotranspiration has 
been computed, according to equation 11, using the 
radiation and air temperature data measured by each 
single sensor, similar ETP values were obtained from 
the different sensors with a quite small standard devia
tion of 1.1 mm day−1. This consistent estimate of 
potential evapotranspiration is also visible in 
Figure 12, where a boxplot for each date was com
puted considering all available sensor each day. On 
each box, the central mark indicates the median, and 
the bottom and top edges of the box indicate the 25th 
and 75th percentiles, respectively. The whiskers 
extend to the most extreme data points not considered 
outliers, and the outliers are plotted individually using 
the “+” symbol. The ETP outliers may be linked to the 
possible uncertainties deriving from the conversion 
coefficient of lux data to incoming shortwave radia
tion, especially for those sensors partially covered 
from vegetation. The potential evapotranspiration sea
sonal trend is also visible showing decreasing values 
during the monitoring period according to climate 
behavior: high values of about 10 mm day−1 during 
August which decrease around 6 mm day−1 during the 
first half of October.

As expected, a higher variability is instead obser
vable in the effective evapotranspiration computed 
from each Parrot sensors data, as being directly 
interconnected to the soil moisture dynamic fol
lowing the rainfall and irrigation events. The time 
evolution of the two evapotranspiration estimates, 
effective and potential, are compared in Figure 13 
for few sensors’ examples covering different crop 
types dynamic, along with soil moisture data. The 

Figure 10. SM time series example for a Copernicus SSM1km pixel, with its uncertainty (shaded area) and the SM distribution of 
the Parrot sensors located within the pixel (a). July (b) and October (c) field type distribution is also detailed.
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upper panel (Figure 13a) identifies a sensor placed 
in a bare soil field during the whole analyzed 
period from July to October. The soil moisture 
values are always very low (lower than 0.1, except 
for the 26 of August during a precipitation event). 
This is reflected in the effective ET that is almost 
equal to zero. A similar behavior is observable in 
the second panel of Figure 13b where a sensor is 
located in a bare soil field during July while in the 
end of September spinaches have been sowed and 
hosting a fully-developed celery crop in October. 
By following the SM evolution, it is clear how 
a previously-empty field (SM values below wilting 
point at mid-August) is prepared for cultivation 

with insistent irrigation, until it transpires at full 
potential (SM well above the Field Capacity) by 
October. The third panel (Figure 13c) identifies 
a celery plot which undergoes harvesting during 
the monitoring period. The evapotranspiration is 
constantly equal to potential values for the cultiva
tion period, with SM much higher than the field 
capacity. After harvesting, the field is left to dry, 
with a considerable decrease in SM. The last panel 
(Figure 13d) identifies a sensor placed in an 
Asparagus field. The oscillating pattern of the SM 
is reflected in the time behavior of the evapotran
spiration. SM is generally oscillating around the 
field capacity leading to ET near its potential 
values.

Irrigation water needs

Two operational products have finally been developed 
for irrigation management purpose from the data 
gathered by the sensors.

Figure 11. Time evolution of Parrot soil moisture (upper half) and satellite vegetation indices Fcover, MSAVI, MSI, NDVI and NDWI 
(VIs, lower half) for some selected sensors in the plots on the right: (a) celery field (CEL), (b) asparagus crop (ASP), (c) tomato crop 
(TOM) and bare soil (BS).

Table 3. Correlation coefficients between SM and the vegeta
tion indices.

SM

Fcover −0.03 Fcover
MSAVI −0.07 0.96 MSAVI
MSI −0.08 −0.84 −0.79 MSI
NDVI −0.09 0.91 0.88 −0.80 NDVI
NDWI −0.07 0.83 0.83 0.97 0.84
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Evapotranspiration based IWN
In particular, the irrigation deficit (ID), as the differ
ence between potential and actual evapotranspiration, 
was computed at daily scale for each sensor. This 
indicator might help in understanding the amount of 
water required by the plants to transpire at full poten
tial. In Figure 12b, a boxplot for each date was com
puted considering all available sensor each day. 
A higher deficit is observable during August with 
many plots being dryer, while during the month of 
October the different between ET and ETP is generally 
smaller due to soil moisture values near the field 
capacity threshold due to intense irrigation. A high 
intra-day variability is also observable, being the sen
sors installed in bare-soil fields and irrigated crops 
fields, which are in turn different crop types, at differ
ent growth stages and hence irrigated with different 
strategies.

Soil moisture based IWN
The second operative product for irrigation manage
ment was directly derived from the Parrot soil moist
ure data, in particular by comparing it against the crop 
stress threshold of each crop and the field capacity 
(Figure 14). In the upper panel (Figure 14a), a bare 
soil field with almost zero water into the soil is then 
planted with cabbages in the beginning of September. 
A typical soil moisture dynamic of an irrigated field is 

then observable with values oscillating between the 
stress threshold and well above the field capacity 
with an irrigation timing of about 5 days. This last 
SM behavior indicates an excessive irrigation volume. 
A similar behavior, but with an opposite timing, is 
visible for the second panel (Figure 14b), where the 
sensor 8C2C is located in a celery field during August. 
SM oscillates every 5 days between the stress threshold 
and well above the FC value. A precise irrigation 
amount is instead observable in the Asparagus field 
(sensor EBA6) with SM never exceeds the FC value 
during its oscillating dynamic with a 4 days amplitude, 
in the middle panel (Figure 14c). The lower panel 
(Figure 14d) refers to a bare soil field where soil 
moisture remains well below the wilting point thresh
old (except for the rainy event of 25–26 August) for all 
the monitored period, being the soil not irrigated.

The SM data from the Parrot sensors have then 
been compared with the SM Copernicus SSM1km in 
terms also of irrigation water needs. For the test date 
of 20 August 2019, the IWN has been computed both 
using the sensors data and the satellite retrievals. The 
Copernicus SSM1km pixel, covering an area around 
74 ha, results coarser than the average field in the area 
(2.6 ha wide). This means that for a single satellite SSM 
value, numerous sensor SSM data are available. To this 
comparison, two Copernicus pixels have been 
selected, one covering the main Azienda area (in 

Figure 12. Box plot of the potential evapotranspiration (a) and the evapotranspiration deficit (b) for all the available sensors for 
each date.
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which 54 sensors were active in the selected date) and 
the other in the Onoranza area (covering 11 sensors in 
the selected date). In Figure 15, the upper row shows 
the Azienda pixel, both in terms of actual SM 
(Figure 15a) and of IWN (Figure 15b). The sensor 
SM data have been classified in two distinct categories: 
irrigated areas (consisting of about 15% of the total 
pixel area for that date) and non-irrigated areas. The 
former includes all sensors associated with crops that 
are detected as irrigated from the Parrot sensors. In 
fact, the Parrot sensors located into the Asparagus 
fields sensors while being a cultivated field are asso
ciated to the second category of bare soil, since they 
are irrigated with sub-superficial drip irrigation at the 
depth of 20 cm is practically invisible to both the 
Parrot sensors, which have a sensing depth of ca. 
7 cm, as well as to the Copernicus SSM (around 
5 cm). For each sensor category, the average SM 
value is indicated with the bold red horizontal line, 
while for the irrigated areas sensors the FAO crop 
stress threshold is also displayed (dashed line) as 
a reference. The difference in behaviors among the 

Parrot sensors is evident. For both the Azienda and 
the Onoranza pixels, the low amount of irrigated areas 
(15% and 26%, respectively) mean that the Copernicus 
SSM is closer to the non-irrigated areas sensors, with 
values around the wilting point. In terms of IWN, as 
for both pixels the average sensor SM for the irrigated 
areas is higher than the field capacity, no irrigation is 
required; on the other hand, using Copernicus SSM 
would prompt important irrigation volumes (around 
10 mm) (Figure 15b,d).

Discussion and conclusions

The potentiality of Citizen Observatories’ such as 
GROW in the research context is a quite new topic, 
which is still to be fully analyzed and understood. 
Thanks to recent technological developments (Friha 
et al., 2021; Yang et al., 2021), IoT infrastructures have 
created new methods for data collection and interpreta
tion (e.g. Wireless Sensor Networks, as the one analyzed 
in this study, but also Unmanned Aerial Systems and 
Agricultural Robotics) and smart agricultural 

Figure 13. Four example computations of the ET and ETP linked to the soil moisture dynamic: a fully bare-soil field (BS) (a), a bare- 
soil (BS) plot being planted with spinach (SPI) (b), a vegetated plot (SED) being harvested (BS) (c), a continuously cultivated field 
with asparagus (ASP) (d).
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management (Angelopoulos et al., 2020). Their increas
ing, wide-ranging availability allows the involvement of 
a larger number of people and increases the opportu
nities for a sustainable management of water resources 
starting from the single citizen (Buytaert et al., 2014). 
The GROW citizen observatory has demonstrated the 
ability to actively involve and motivate a wide range of 
growers and farmers, from smallholders to big compa
nies for improving water management in a sustainable 
way as well as the scientific community (Kovács et al., 
2019; Woods et al., 2020).

However, currently in the scientific community 
there is no defined standard and accurate evalua
tion procedure to identify the value of using citizen 
science data. This “scientific education” question 
has also been recognized as one of the challenges 
that needs to be addressed in order to effectively 
enforce smart agriculture (Friha et al., 2021). In 
this paper, we analyzed the reliability of low-cost 
sensors for agricultural monitoring in respect to 
other traditional professional ground measurements 
and satellite information.

In the literature, numerous studies revolve 
around the management of low-cost sensing net
works for smart agricultural management. Positive 

instances of development and use of such networks 
can be found in Tagarakis et al. (2021), who 
obtained good results in terms of independence 
and reliability in small to medium sized orchards, 
and in Panjabi et al. (2018), who conducted 
a reliable and accurate monitoring of a small agri
cultural watershed in Canada.

As a general result, the Flower Parrot sensors could 
be a valuable source of information that could be used 
to integrate traditional measures, especially thanks to 
their highly dense distribution in space. Nevertheless, 
each measured data must be analyzed with particular 
attention.

In fact, looking in more detail, Parrot air tem
perature has been found to be in agreement with 
professional air temperature data especially during 
the night (night-time RMSE of 1.6°C), while during 
the daytime hours and especially over bare soil 
fields higher discrepancies are obtained mainly 
due to the PAT measurement height of 5 cm and 
the overheating of the sensor plastic cover (daytime 
RMSE increases up to 7.7°C). In fact, daytime PAT 
has been proved to be higher correlated with satel
lite LST, with a close-to-one slope coefficient of the 
interpolation.

Figure 14. Four examples of soil moisture dynamic: a bare-soil (BS) plot being planted (SPI) (a), a vegetated (CEL) plot being 
harvested (BS) (b), a continuously cultivated field with asparagus (ASP) (c) a fully bare-soil field (BS) (d).
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A strong correlation has been obtained among the 
Flower Parrot sensors illuminance data and the 
incoming shortwave radiation data for all sensors. 
Among non-shadowed sensors, the conversion coeffi
cients were detected around 5.41, with quite small 
dispersion (variation coefficient of 6.4%).

Acceptable results (RMSE = 0.55 m2 m−2, R2 = 0.34) 
are obtained between the LAI estimated from the 
ground sensors and the remote sensing data, exclud
ing the situations in which the sensor is located in 
a satellite pixel straddling several fields with different 
coverages.

A higher variability is instead obtained when the 
sensors’ SM is compared with the Copernicus 
SSM1km data, which, due to its low spatial resolution, 
is not able to capture the variability detected by the 
ground measurements showing a low R2 of 0.23 and 
a general underestimation (m = 0.75) caused by bare- 
soil fields. These results are in accordance with those 
obtained by Zappa et al. (2019) which showed that low- 

cost sensors are a valuable tool for satellite SM data 
validation over a more homogenous cover area. These 
Parrot SM data might be of great interest to improve the 
knowledge of soil moisture spatial variability, otherwise 
not detectable with the traditional sensors, as also 
reported by Bogena et al. (2010).

The sensors potentiality has been also demon
strated by computing the more operative agricultural 
monitoring indices, as the evapotranspiration deficit 
as well as the irrigation water needs based on the 
crops soil moisture stress thresholds providing 
higher variability in respect of using only a satellite 
image information.

A limitation of these Parrot SM data might be 
linked to the measurements depth which is limited to 
few centimeters which is less relevant to farmers to 
water the plants being the roots usually much deeper; 
while this depth corresponds to the sensitive area of 
Sentinel 1 signal allowing its comparison and valida
tion (Zappa et al., 2019).

Figure 15. Soil moisture values from Parrot sensors and Copernicus SSM for the “Azienda” (a) and the “Onoranza” (c) selected 
pixels, for the 20 August 2019. Corresponding IWN are also shown, respectively, (b) and (d). ASP is asparagus, BS bare soil, CEL 
celery, FEN is fennels, CAB cabbage, TOM tomatoes.
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Besides measurement accuracy, another issue with 
the applicability of Parrot Flower Power sensors is 
related to their functioning reliability. In fact, out of 
the 456 sensors, 387 sensors provided data covering 
more than a couple of days with many data gaps, while 
only 158 sensors provided at most 20 days with data. 
Notably, no data was stored for the 31 July – 10 August 
and 8 September – 20 September periods due to sen
sors acquisition issues. Some sensors have also been 
lost during the end of August harvest operations.

The general quality of these data could also be 
affected by the bad use or installation by farmers, 
providing some results outliers in the acquired data. 
A proper merging of the information from a dense 
ground low-cost network with satellite information 
could be a good solution for improving irrigation 
management and agricultural monitoring activities, 
overcoming the problems of each specific type of data.
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