250 research outputs found
Void Growth in BCC Metals Simulated with Molecular Dynamics using the Finnis-Sinclair Potential
The process of fracture in ductile metals involves the nucleation, growth,
and linking of voids. This process takes place both at the low rates involved
in typical engineering applications and at the high rates associated with
dynamic fracture processes such as spallation. Here we study the growth of a
void in a single crystal at high rates using molecular dynamics (MD) based on
Finnis-Sinclair interatomic potentials for the body-centred cubic (bcc) metals
V, Nb, Mo, Ta, and W. The use of the Finnis-Sinclair potential enables the
study of plasticity associated with void growth at the atomic level at room
temperature and strain rates from 10^9/s down to 10^6/s and systems as large as
128 million atoms. The atomistic systems are observed to undergo a transition
from twinning at the higher end of this range to dislocation flow at the lower
end. We analyze the simulations for the specific mechanisms of plasticity
associated with void growth as dislocation loops are punched out to accommodate
the growing void. We also analyse the process of nucleation and growth of voids
in simulations of nanocrystalline Ta expanding at different strain rates. We
comment on differences in the plasticity associated with void growth in the bcc
metals compared to earlier studies in face-centred cubic (fcc) metals.Comment: 24 pages, 12 figure
Non-magnetic impurities in two dimensional superconductors
A numerical approach to disordered 2D superconductors described by BCS mean
field theory is outlined. The energy gap and the superfluid density at zero
temperature and the quasiparticle density of states are studied. The method
involves approximate self-consistent solutions of the Bogolubov-deGennes
equations on finite square lattices. Where comparison is possible, the results
of standard analytic approaches to this problem are reproduced. Detailed
modeling of impurity effects is practical using this approach. The {\it range}
of the impurity potential is shown to be of {\it quantitative importance} in
the case of strong potential scatterers. We discuss the implications for
experiments, such as the rapid suppression of superconductivity by Zn doping in
Copper-Oxide superconductors.Comment: 16 pages, latex, 8 figures( available upon request
Patenting and licensing of university research: promoting innovation or undermining academic values?
Since the 1980s in the US and the 1990s in Europe, patenting and licensing activities by universities have massively increased. This is strongly encouraged by governments throughout the Western world. Many regard academic patenting as essential to achieve 'knowledge transfer' from academia to industry. This trend has far-reaching consequences for access to the fruits of academic research and so the question arises whether the current policies are indeed promoting innovation or whether they are instead a symptom of a pro-intellectual property (IP) culture which is blind to adverse effects. Addressing this question requires both empirical analysis (how real is the link between academic patenting and licensing and 'development' of academic research by industry?) and normative assessment (which justifications are given for the current policies and to what extent do they threaten important academic values?). After illustrating the major rise of academic patenting and licensing in the US and Europe and commenting on the increasing trend of 'upstream' patenting and the focus on exclusive as opposed to non-exclusive licences, this paper will discuss five negative effects of these trends. Subsequently, the question as to why policymakers seem to ignore these adverse effects will be addressed. Finally, a number of proposals for improving university policies will be made
The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium
A new approach to the interpretation and analysis of coherent inelastic neutron scattering
from polycrystals (poly-CINS) is presented. Here we describe a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is characterized by sharp features e.g. determined by boundaries of the (Q, omega) regions where one-phonon scattering is allowed. These features may be identified with the same features apparent in the measured total coherent inelastic cross-section, the other components of which(multiphonon or multiple scattering) show no sharp features. The parameters of the model can then be relaxed to improve the fit between model and experiment. This method is of particular interest where
no single crystals are available. To test the approach, we have measured the poly-CINS for polycrystalline aluminium using the MARI spectrometer (ISIS) because both lattice dynamical models and measured dispersion curves are available for this material. The models used include a
simple Lennard-Jones model fitted to the elastic constants of this material plus a number of Embedded Atom Method (EAM) force fields. The agreement obtained suggests that the method demonstrated should be effective in developing models for other materials where single crystal dispersion curves are not available
Risk of Malignant Progression in Barrett’s Esophagus Patients: Results from a Large Population-Based Study
BACKGROUND: Barrett’s esophagus (BE) is a premalignant lesion that predisposes to esophageal adenocarcinoma. However, the reported incidence of esophageal adenocarcinoma in patients with BE varies widely. We examined the risk of malignant progression in patients with BE using data from the Northern Ireland Barrett’s esophagus Register (NIBR), one of the largest population-based registries of BE worldwide, which includes every adult diagnosed with BE in Northern Ireland between 1993 and 2005. SUBJECTS AND METHODS: We followed 8522 patients with BE, defined as columnar lined epithelium of the esophagus with or without specialized intestinal metaplasia (SIM), until the end of 2008. Patients with incident adenocarcinomas of the esophagus or gastric cardia or with high-grade dysplasia of the esophagus were identified by matching the NIBR with the Northern Ireland Cancer Registry, and deaths were identified by matching with records from the Registrar General’s Office. Incidence of cancer outcomes or high-grade dysplasia was calculated as events per 100 person-years (% per year) of follow-up, and Cox proportional hazard models were used to determine incidence by age, sex, length of BE segment, presence of SIM, macroscopic BE, or low-grade dysplasia. All P values were from two-sided tests. RESULTS: After a mean of 7.0 years of follow-up, 79 patients were diagnosed with esophageal cancer, 16 with cancer of the gastric cardia, and 36 with high-grade dysplasia. In the entire cohort, incidence of esophageal or gastric cardia cancer or high-grade dysplasia combined was 0.22% per year (95% confidence interval [CI] = 0.19% to 0.26%). SIM was found in 46.0% of patients. In patients with SIM, the combined incidence was 0.38% per year (95% CI = 0.31 to 0.46%). The risk of cancer was statistically significantly elevated in patients with vs without SIM at index biopsy (0.38% per year vs 0.07% per year; hazard ratio [HR] = 3.54, 95% CI = 2.09 to 6.00, P < .001), in men compared with women (0.28% per year vs 0.13% per year; HR = 2.11, 95% CI = 1.41 to 3.16, P < .001), and in patients with low-grade dysplasia compared with no dysplasia (1.40% per year vs 0.17% per year; HR = 5.67, 95% CI = 3.77 to 8.53, P < .001). CONCLUSION: We found the risk of malignant progression among patients with BE to be lower than previously reported, suggesting that currently recommended surveillance strategies may not be cost-effective
Seven HCI Grand Challenges
This article aims to investigate the Grand Challenges which arise in the current and emerging landscape of rapid technological evolution towards more intelligent interactive technologies, coupled with increased and widened societal needs, as well as individual and collective expectations that HCI, as a discipline, is called upon to address. A perspective oriented to humane and social values is adopted, formulating the challenges in terms of the impact of emerging intelligent interactive technologies on human life both at the individual and societal levels. Seven Grand Challenges are identified and presented in this article: Human-Technology Symbiosis; Human-Environment Interactions; Ethics, Privacy and Security; Well-being, Health and Eudaimonia; Accessibility and Universal Access; Learning and Creativity; and Social Organization and Democracy. Although not exhaustive, they summarize the views and research priorities of an international interdisciplinary group of experts, reflecting different scientific perspectives, methodological approaches and application domains. Each identified Grand Challenge is analyzed in terms of: concept and problem definition; main research issues involved and state of the art; and associated emerging requirements
Intellectual Property, Open Science and Research Biobanks
In biomedical research and translational medicine, the ancient war between exclusivity (private control over information) and access to information is proposing again on a new battlefield: research biobanks. The latter are becoming increasingly important (one of the ten ideas changing the world, according to Time magazine) since they allow to collect, store and distribute in a secure and professional way a critical mass of human biological samples for research purposes. Tissues and related data are fundamental for the development of the biomedical research and the emerging field of translational medicine: they represent the “raw material” for every kind of biomedical study. For this reason, it is crucial to understand the boundaries of Intellectual Property (IP) in this prickly context. In fact, both data sharing and collaborative research have become an imperative in contemporary open science, whose development depends inextricably on: the opportunities to access and use data, the possibility of sharing practices between communities, the cross-checking of information and results and, chiefly, interactions with experts in different fields of knowledge. Data sharing allows both to spread the costs of analytical results that researchers cannot achieve working individually and, if properly managed, to avoid the duplication of research. These advantages are crucial: access to a common pool of pre-competitive data and the possibility to endorse follow-on research projects are fundamental for the progress of biomedicine. This is why the "open movement" is also spreading in the biobank's field. After an overview of the complex interactions among the different stakeholders involved in the process of information and data production, as well as of the main obstacles to the promotion of data sharing (i.e., the appropriability of biological samples and information, the privacy of participants, the lack of interoperability), we will firstly clarify some blurring in language, in particular concerning concepts often mixed up, such as “open source” and “open access”. The aim is to understand whether and to what extent we can apply these concepts to the biomedical field. Afterwards, adopting a comparative perspective, we will analyze the main features of the open models – in particular, the Open Research Data model – which have been proposed in literature for the promotion of data sharing in the field of research biobanks.
After such an analysis, we will suggest some recommendations in order to rebalance the clash between exclusivity - the paradigm characterizing the evolution of intellectual property over the last three centuries - and the actual needs for access to knowledge. We argue that the key factor in this balance may come from the right interaction between IP, social norms and contracts. In particular, we need to combine the incentives and the reward mechanisms characterizing scientific communities with data sharing imperative
Atoms in the Surf: Molecular Dynamics Simulation of the Kelvin-Helmholtz Instability using 9 Billion Atoms
We present a fluid dynamics video showing the results of a 9-billion atom
molecular dynamics simulation of complex fluid flow in molten copper and
aluminum. Starting with an atomically flat interface, a shear is imposed along
the copper-aluminum interface and random atomic fluctuations seed the formation
of vortices. These vortices grow due to the Kelvin-Helmholtz instability. The
resulting vortical structures are beautifully intricate, decorated with
secondary instabilities and complex mixing phenomena. This work performed under
the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.Comment: Description of video submitted to APS DFD Gallery of Fluid Motion
200
Recommended from our members
High-Pressure Tailored Compression: Controlled Thermodynamic Paths
We have recently carried out novel and exploratory dynamic experiments where the sample follows a prescribed thermodynamic path. In typical dynamic compression experiments, the samples are thermodynamically limited to the principal Hugoniot or quasi-isentrope. With recent developments in the functionally graded material impactor, we can prescribe and shape the applied pressure profile with similarly-shaped, non-monotonic impedance profile in the impactor. Previously inaccessible thermodynamic states beyond the quasi-isentropes and Hugoniot can now be reached in dynamic experiments with these impactors. In the light gas-gun experiments on copper reported here, we recorded the particle velocities of the Cu-LiF interfaces and employed hydrodynamic simulations to relate them to the thermodynamic phase diagram. Peak pressures for these experiments were on the order of megabars, and the time-scales ranged from nanoseconds to several microseconds. The strain rates of the quasi-isentropic experiments are approximately 10{sup 4} s{sup -1} to 10{sup 6} s{sup -1} in samples with thicknesses up to 5 mm. Though developed at a light-gas gun facility, such shaped pressure-profiles are also feasible in principle with laser ablation or magnetic driven compression techniques allowing for new directions to be taken in high pressure physics
- …
