526 research outputs found

    Creative practices and public engagement

    Get PDF

    Signature of effective mass in crackling noise asymmetry

    Full text link
    Crackling noise is a common feature in many dynamic systems [1-9], the most familiar instance of which is the sound made by a sheet of paper when crumpled into a ball. Although seemingly random, this noise contains fundamental information about the properties of the system in which it occurs. One potential source of such information lies in the asymmetric shape of noise pulses emitted by a diverse range of noisy systems [8-12], but the cause of this asymmetry has lacked explanation [1]. Here we show that the leftward asymmetry observed in the Barkhausen effect [2] - the noise generated by the jerky motion of domain walls as they interact with impurities in a soft magnet - is a direct consequence of a magnetic domain wall's negative effective mass. As well as providing a means of determining domain wall effective mass from a magnet's Barkhausen noise our work suggests an inertial explanation for the origin of avalanche asymmetries in crackling noise phenomena more generally.Comment: 13 pages, 4 figures, to appear in Nature Physic

    Imaging Thermal He(+)in Geospace from the Lunar Surface

    Get PDF
    By mass, thermal plasma dominates near-earth space and strongly influences the transport of energy and mass into the earth's atmosphere. It is proposed to play an important role in modifying the strength of space weather storms by its presence in regions of magnetic reconnection in the dayside magnetopause and in the near to mid-magnetotail. Ionospheric-origin thermal plasma also represents the most significant potential loss of atmospheric mass from our planet over geological time. Knowledge of the loss of convected thermal plasma into the solar wind versus its recirculation across high latitudes and through the magnetospheric flanks into the magnetospheric tail will enable determination of the mass balance for this mass-dominant component of the Geospace system and of its influence on global magnetospheric processes that are critical to space weather prediction and hence to the impact of space processes on human technology in space and on Earth. Our proposed concept addresses this basic issue of Geospace dynamics by imaging thermal He(+) ions in extreme ultraviolet light with an instrument on the lunar surface. The concept is derived from the highly successful Extreme Ultraviolet imager (EUV) flown on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft. From the lunar surface an advanced EUV imager is anticipated to have much higher sensitivity, lower background noise, and higher communication bandwidth back to Earth. From the near-magnetic equatorial location on the lunar surface, such an imager would be ideally located to follow thermal He(+) ions to high latitudes, into the magnetospheric flanks, and into the magnetotail

    A Scalable Middleware Solution for Advanced Wide Area Web Services

    Get PDF
    To alleviate scalability problems in the Web, many researchers concentrate on how to incorporate advanced caching and replication techniques. Many solutions incorporate object-based techniques. In particular, Web resources are considered as distributed objects offering a well-defined interface. We argue that most proposals ignore two important aspects. First, there is little discussion on what kind of coherence should be provided. Proposing specific caching or replication solutions makes sense only if we know what coherence model they should implement. Second, most proposals treat all Web resources alike. Such a one-size-fits-all approach will never work in a wide-area system. We propose a solution in which Web resources are encapsulated in physically distributed shared objects. Each object should encapsulate not only state and operations, but also the policy by which its state is distributed, cached, replicated, migrated, etc

    Scaling properties of driven interfaces in disordered media

    Full text link
    We perform a systematic study of several models that have been proposed for the purpose of understanding the motion of driven interfaces in disordered media. We identify two distinct universality classes: (i) One of these, referred to as directed percolation depinning (DPD), can be described by a Langevin equation similar to the Kardar-Parisi-Zhang equation, but with quenched disorder. (ii) The other, referred to as quenched Edwards-Wilkinson (QEW), can be described by a Langevin equation similar to the Edwards-Wilkinson equation but with quenched disorder. We find that for the DPD universality class the coefficient λ\lambda of the nonlinear term diverges at the depinning transition, while for the QEW universality class either λ=0\lambda = 0 or λ0\lambda \to 0 as the depinning transition is approached. The identification of the two universality classes allows us to better understand many of the results previously obtained experimentally and numerically. However, we find that some results cannot be understood in terms of the exponents obtained for the two universality classes {\it at\/} the depinning transition. In order to understand these remaining disagreements, we investigate the scaling properties of models in each of the two universality classes {\it above\/} the depinning transition. For the DPD universality class, we find for the roughness exponent αP=0.63±0.03\alpha_P = 0.63 \pm 0.03 for the pinned phase, and αM=0.75±0.05\alpha_M = 0.75 \pm 0.05 for the moving phase. For the growth exponent, we find βP=0.67±0.05\beta_P = 0.67 \pm 0.05 for the pinned phase, and βM=0.74±0.06\beta_M = 0.74 \pm 0.06 for the moving phase. Furthermore, we find an anomalous scaling of the prefactor of the width on the driving force. A new exponent φM=0.12±0.06\varphi_M = -0.12 \pm 0.06, characterizing the scaling of this prefactor, is shown to relate the values of the roughnessComment: Latex manuscript, Revtex 3.0, 15 pages, and 15 figures also available via anonymous ftp from ftp://jhilad.bu.edu/pub/abms/ (128.197.42.52

    A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer

    Get PDF
    Local recurrence is a common cause of treatment failure for patients with solid tumors. Intraoperative detection of microscopic residual cancer in the tumor bed could be used to decrease the risk of a positive surgical margin, reduce rates of reexcision, and tailor adjuvant therapy. We used a protease-activated fluorescent imaging probe, LUM015, to detect cancer in vivo in a mouse model of soft tissue sarcoma (STS) and ex vivo in a first-in-human phase 1 clinical trial. In mice, intravenous injection of LUM015 labeled tumor cells, and residual fluorescence within the tumor bed predicted local recurrence. In 15 patients with STS or breast cancer, intravenous injection of LUM015 before surgery was well tolerated. Imaging of resected human tissues showed that fluorescence from tumor was significantly higher than fluorescence from normal tissues. LUM015 biodistribution, pharmacokinetic profiles, and metabolism were similar in mouse and human subjects. Tissue concentrations of LUM015 and its metabolites, including fluorescently labeled lysine, demonstrated that LUM015 is selectively distributed to tumors where it is activated by proteases. Experiments in mice with a constitutively active PEGylated fluorescent imaging probe support a model where tumor-selective probe distribution is a determinant of increased fluorescence in cancer. These co-clinical studies suggest that the tumor specificity of protease-activated imaging probes, such as LUM015, is dependent on both biodistribution and enzyme activity. Our first-in-human data support future clinical trials of LUM015 and other protease-sensitive probes

    Hysteresis and Avalanches in the Random Anisotropy Ising Model

    Get PDF
    The behaviour of the Random Anisotropy Ising model at T=0 under local relaxation dynamics is studied. The model includes a dominant ferromagnetic interaction and assumes an infinite anisotropy at each site along local anisotropy axes which are randomly aligned. Two different random distributions of anisotropy axes have been studied. Both are characterized by a parameter that allows control of the degree of disorder in the system. By using numerical simulations we analyze the hysteresis loop properties and characterize the statistical distribution of avalanches occuring during the metastable evolution of the system driven by an external field. A disorder-induced critical point is found in which the hysteresis loop changes from displaying a typical ferromagnetic magnetization jump to a rather smooth loop exhibiting only tiny avalanches. The critical point is characterized by a set of critical exponents, which are consistent with the universal values proposed from the study of other simpler models.Comment: 40 pages, 21 figures, Accepted for publication in Phys. Rev.
    corecore