
Distrib. Syst. Engng6 (1999) 34–42. Printed in the UK PII: S0967-1846(99)04181-9

A scalable middleware solution for
advanced wide-area Web services

Maarten van Steen†, Andrew S Tanenbaum†, Ihor Kuz‡ and
Henk J Sips‡

† Vrije Universiteit, Department of Mathematics and Computer Science, De Boelelaan
1081a, 1081 HV Amsterdam, The Netherlands
‡ Delft University of Technology, Department of Computer Science, Zuiderplantsoen 4, 2628
BZ Delft, The Netherlands

E-mail: steen@cs.vu.nl, ast@cs.vu.nl, ikuz@cs.tudelft.nl and
h.j.sips@cs.tudelft.nl

Received 11 February 1999

Abstract. To alleviate scalability problems in the Web, many researchers concentrate on how
to incorporate advanced caching and replication techniques. Many solutions incorporate
object-based techniques. In particular, Web resources are considered as distributed objects
offering a well-defined interface.
We argue that most proposals ignore two important aspects. First, there is little discussion on
what kind of coherence should be provided. Proposing specific caching or replication
solutions makes sense only if we know what coherence model they should implement.
Second, most proposals treat all Web resources alike. Such a one-size-fits-all approach will
never work in a wide-area system. We propose a solution in which Web resources are
encapsulated in physically distributed shared objects. Each object should encapsulate not
only state and operations, but also the policy by which its state is distributed, cached,
replicated, migrated, etc.

1. Introduction

As the Web continues to gain popularity, we are increasingly
confronted with its limited scalability. Web servers are
often unreachable due to an overload of requests for pages.
Likewise, we are faced with long downloading times caused
by bandwidth limitations and unreliable links. Many of these
problems are caused by the growing number of users and the
steadily increasing size of resources such as images, audio
and video.

Traditional scaling techniques, such as caching
and replication [20], have been applied as solutions.
Unfortunately, inherent to these techniques areconsistency
problems: modifications to one copy of a cached or replicated
Web page make that copy different from the other replicas.
Also, most proposals assume that a single consistency
model is required and appropriate for all resources. With
the large variety of Web pages already existing, and the
increasing alternative applications of Web technology, it is
clear that such a one-size-fits-all approach will eventually fail.
Instead, different consistency models based on the content
and semantics of Web resources will need to coexist if we are
to solve scalability problems.

Consider, for example, a seldom-accessed personal
home page. Caching such a page is hardly effective and doing
so simply wastes storage capacity. On the other hand, it could
make sense to actively push updates of popular home pages
to areas with many clients to reduce bandwidth and latency
problems. Other examples easily come to mind.

Another problem faced by the Web is its limited
flexibility with regard to the introduction of new resources
and services. Although nonstandard resources, such as Java
applets, have been integrated into the Web, the means by
which this is done usually requires a unique solution for each
new type of resource. Creating such solutions is not always
an easy task, and they are rarely elegant.

It is clear that a different approach is needed to overcome
the limited scalability of the current Web. Our starting point
is that caching and replication are crucial to scalability, but
that effective solutions can be constructed only if we take
application-level requirements into account. In this light, we
propose an object-based middleware solution called Globe.
Key to our approach are physically distributed objects that
encapsulate not only state and methods, but also complete
distribution policies. In other words, each object in our
approach carries its own solution to the distribution of its
state, including how that state is partitioned, replicated,
migrated, etc. Consequently, all implementation aspects are
hidden from clients, who see only the interfaces offered by
the object.

By offering a framework that allows us to apply
scaling techniques on a per-object basis, we will be able
to develop worldwide scalable components from which the
next generation of networked applications can be built.
To demonstrate the feasibility of our approach, we are
developing a large-scale, wide-area distributed Web service.
The service is transparently distributed across a (potentially

0967-1846/99/010034+09$30.00 © 1999 The British Computer Society, The Institution of Electrical Engineers & IOP Publishing Ltd

A scalable middleware solution for advanced wide-area Web services

Table 1. Different kinds of distribution transparency relevant for distributed systems [12].

Transparency Description

Access transparency Hides differences in data representation and invocation mechanisms
Failure transparency Hides failure and possible recovery of objects
Location transparency Hides where an object resides
Migration transparency Hides from an object the ability of a system to change that object’s location
Relocation transparency Hides from a client the ability of a system to change the location of an object to which the client is bound
Replication transparency Hides the fact that an object or its state may be replicated and that replicas reside at different locations
Persistence transparency Hides the fact that an object may be (partly) passivated by the system
Transaction transparency Hides the coordination of activities between objects to achieve consistency at a higher level

large) number of servers in a global network. In this paper
we describe Globe and its application to the Web service.

This paper makes two main contributions. First, we
show how scalability problems in wide-area systems can
be alleviated by a middleware solution in which objects
are physically distributed and fully encapsulate their own
distribution policy. Second, we describe an alternative
organization of Web-based applications that allows us to deal
with distributed Web resources in an elegant and scalable way.
We also show how our service can be fully integrated into the
current Web.

The paper is organized as follows. In section 2 we
describe the basic approach followed in Globe. How Globe
can be used to build a wide-area distributed Web service is
described in section 3, which is partly based on our experience
with a Java prototype. Related work is described in section 4;
we conclude in section 5.

2. Scalable distributed objects

2.1. Distributed-object technology

An important goal of distributed systems isdistribution
transparency: providing a single-system view despite
the distribution of data, processes, and control across
multiple machines. There are different kinds of distribution
transparency as shown in table 1. Object technology came
into vogue some years ago as the means for realizing
transparency in distributed systems. For example, access
transparency can be achieved by following an interface-based
approach as in CORBA [22] and ILU [13]. Likewise, location
and migration transparency can be supported by means of
forwarding pointers as in the Emerald system [14] and more
recently in the Voyager toolkit [21]. Finally, seamless
integration of object persistence has been investigated for
distributed systems such as Spring [24].

However, when we take a closer look at the way
distribution is actually supported in object-based systems,
it appears that objects are used only in a restricted way to
address transparency problems. For example, all well known
systems today adopt the remote-object model. In this model,
an object is located at a single location only, whereas the client
is offered access transparency through a proxy interface. At
best, the object is allowed to move to other locations without
having to explicitly inform the client.

There are a number of serious drawbacks to the remote-
object model, most notably its lack of scalability. To alleviate
scalability problems it is necessary to apply techniques such
as caching and replication. This means that multiple copies of

the object reside at different locations. Having only a remote-
invocation mechanism available, we now have to solve the
problem of how an invocation is to be propagated between the
object replicas. Unfortunately, there is no standard solution.
For active replication, an invocation or the results could be
shipped to every replica. In addition, we generally have to
implement a total ordering on concurrent invocations [25]. In
the case ofpassive replication, update invocations are to be
propagated to a master copy only, whereas read invocations
can often be performed at backup copies [3]. There are
numerous variations on this theme.

The remote-object model itself provides no mechanisms
that support a developer in designing and implementing
different invocation schemes, which is necessary if we are
to apply scaling techniques such as caching, replication, and
distribution.

2.2. Globe: an alternative approach

As an alternative to the remote-object model, we have
developed a model in which processes interact and
communicate throughdistributed shared objects [30]. Like
distributed objects in other models, an object offers one or
moreinterfaces, each consisting of a set of methods. Objects
are passive, but multiple processes may simultaneously
access the same object. Changes to the object’s state made
by one process are visible to the others. However, unlike
any other model, a distributed object in Globe isphysically
distributed, meaning that its state may be partitioned and
replicated across multiple machines at the same time. Clients
of an object are unaware of such a distribution; they see only
the interface(s) made available to them by the object.

Besides being physically distributed, each object fully
encapsulates its owndistribution policy. In other words,
there is no systemwide policy imposing how an object’s state
should be distributed and kept consistent. For example, we
may have a distributed object whose state is replicated at
each client, and where method invocations are forwarded to
all clients. Another object may have adopted an approach in
which state updates always occur at a master copy and are
subsequently shipped to the replicas. Likewise, there may
be objects that move their state between locations, have their
state highly secured against malicious clients, or keep state at
highly fault tolerant servers only. The important thing is that
clients need not be aware of such details as they are hidden
behind an object’s interface.

In order for a process to invoke an object’s method, it
must firstbind to that object by contacting it at one of the
object’s contact points. Acontact address describes such a

35

M van Steenet al

contact point, specifying a network address and a protocol
through which the binding can take place. Binding results
in an interface belonging to the object being placed in the
client’s address space, along with an implementation of that
interface. Such an implementation is called alocal object.
This model is illustrated in figure 1.

2.2.1. Architecture of a distributed shared object.
A local object resides in a single address space and
communicates with local objects in other address spaces.
Each local object is composed of several subobjects, and is
itself again fully self-contained, as also shown in figure 1.
A minimal composition consists of the following five
subobjects.

Semantics subobject. This is a local subobject that
implements (part of) the actual semantics of the distributed
object. As such, it encapsulates the functionality of the
distributed object. The semantics subobject consists of user-
defined primitive objects written in programming languages
such as Java, C, or C++. These primitive objects can
be developed independent of any distribution or scalability
issues.

Communication subobject. This is generally a system-
provided subobject. It is responsible for handling
communication between parts of the distributed object
that reside in different address spaces. Depending
on what is needed from the other components, a
communication subobject may offer primitives for point-to-
point communication, multicast facilities, or both.

Replication subobject. The global state of the distributed
object is made up of the state of its various semantics
subobjects. Semantics subobjects may be replicated for
reasons of fault tolerance or performance. In particular, the
replication subobject is responsible for keeping these replicas
consistent according to some (per-object) coherence strategy.
Different distributed objects may have different replication
subobjects, using different replication algorithms.

An important observation is that the replication subob-
ject has a standard interface. However, implementations of
that interface will generally differ between replication sub-
objects. In a sense, this subobject behaves as a meta-level
object comparable to techniques applied in reflective object-
oriented programming [16].

Control subobject. The control subobject takes care of
invocations from client processes, and controls the interaction
between the semantics subobject and the replication
subobject. This subobject is needed to bridge the gap between
the user-defined interfaces of the semantics subobject, and the
standard interfaces of the replication subobject.

Security subobject. The security subobject represents
the internal protection of the distributed object against
intruders. The subobject checks whether incoming
invocation requests are valid, checks whether invocations
are actually allowed, and assists the control subobject in

verifying local invocations. Finally, it can communicate
with local security services. Like the interfaces of the
communication and replication subobject, the interfaces of
the security subobject are also standardized.

A key role, of course, is reserved for the replication
subobject. An important observation is that communication
and replication subobjects are unaware of the methods
and state of the semantics subobject. Instead, both the
communication subobject and the replication subobject
operate only on invocation messages in which method
identifiers and parameters have been encoded. This
independence allows us to define standard interfaces for all
replication subobjects and communication subobjects.

2.2.2. Client-to-object binding. To communicate with
a distributed object, it is necessary for a process to first
bind to that object. Binding consists roughly of two phases:
finding the object, and installing the interface. This process
is illustrated in figure 2.

To find an object, a process must pass the name of that
object to a naming service that can resolve that name (step
©1 in figure 2). The naming service returns anobject handle
(step©2), which is a location-independent and universally
unique object identifier, such as a 128-bit number, which
is used to locate objects. It can be passed freely between
processes as an object reference. The object handle is given
to a location service, which returns one or several contact
addresses (step©3).

This organization of a naming and a location service
allows us to separate issues related to naming objects from
those related to contacting objects. In particular, it is now
easy to support multiple and independent (human-readable)
names for an object, analogous to multiple links to a file
name inUNIX. Because an object handle does not change
once it has been assigned to an object, a user can easily bind
a private, or locally shared name to an object without ever
having to worry that the name-to-object binding will change
without notice. On the other hand, an object can update its
contact addresses at the location service without having to
consider under which name it can be reached by its clients.
However, we do require a scalable location service that can
handle frequent updates of contact addresses in an efficient
manner. We have designed such a service [29, 31] and have
implemented an initial prototype version for testing on the
Internet.

Once a process knows where it can contact the distributed
object, it needs to select a suitable address from the ones
returned by the location service. A contact address may be
selected for its locality, but there may also be other criteria
for preferring one address over another.

A contact address describeswhere andhow the requested
object can be reached. The latter is contained as protocol
information in the contact address. The protocol information
is used to load classes from a (trusted) implementation
repository, and to subsequently instantiate those classes
(step©4 in figure 2). Finally, the client needs to contact
the distributed shared object (step©5). The local object
implements the interface(s) offered by the distributed shared
object.

36

A scalable middleware solution for advanced wide-area Web services

Figure 1. Example of an object distributed across four address spaces.

Figure 2. Binding a process to a distributed shared object.

3. Scalable distributed Web services

To illustrate how our approach can be applied to solve
scalability problems of the World Wide Web, we discuss the
design of a Globe-based distributed Web service.

3.1. Overview of the Globe Web service

3.1.1. Globe Web documents. The essence of a Globe-
based Web service is that it allows clients access to Globe
Web documents, referred to as GlobeDocs. Conceptually,

a GlobeDoc is a distributed shared object containing a
collection of logically related Web pages. Each Globe
Web document may consist of text, icons, images, sounds,
animations, etc, as well as applets, scripts, and other forms
of executable code. We refer to these parts aselements. The
hyperlinked structure as normally provided by Web pages
is maintained in a GlobeDoc. Aninternal hyperlink that
is part of some GlobeDoc refers to an element in that same
document. Anexternal hyperlink refers to an element of
another GlobeDoc.

For simplicity, all elements and hyperlinks of a

37

M van Steenet al

GlobeDoc are collected into a single archive, which is
subsequently wrapped into a (nondistributed) semantics
subobject. This semantics subobject offers several interfaces
as shown in table 2. In principle, these interfaces are available
to each client that is bound to the GlobeDoc. Details on how
these interfaces are implemented are described in section 3.2.

3.1.2. Document coherence. What makes our approach
unique compared with existing Web services is that each
GlobeDoc has its own associated distribution policy. For
example, a document containing personal information, as in
the case of ordinary personal home pages, may support a
policy by which updates are always done at a master copy
and clients are offered only remote access to that copy. On
the other hand, a document consisting of a shared whiteboard
may adopt a policy by which each client has local access
to a full replica of the whiteboard, and by which updates
are immediately propagated to all other clients. Other
distribution policies can easily be associated with a document
and will generally depend on what, how and where the
document offers functionality to its clients.

For our distributed Web service, we concentrate
primarily on scalability. Instead of tackling scalability
problems by focusing directly on caching and replication,
we advocate that it is necessary to concentrate first on
coherence issues. Coherence deals with the effect of read and
write operations by different clients on a possibly replicated
distributed object, as viewed by clients of that object.
Caching and replication are part ofcoherence protocols,
which implement a specificcoherence model. In Globe, we
distinguish two types of coherence models:

Object-centric coherence models describe the coher-
ence a distributed shared object offers to concurrently op-
erating clients. The models are based on those developed
for distributed shared memory systems, and include sequen-
tial consistency [17], PRAM consistency [18], causal consis-
tency [1, 10], and eventual consistency.

Client-centric coherence models allow a client to
express its own coherence requirements. Our approach here
is similar to work done in the Bayou project [28]. Bayou
provides mobile users with weak consistency support in a
replicated database. We have basically retained their models,
which include scenarios for monotonic writes, monotonic
reads, writes follow reads, and read your writes.

Details on our support for coherence models are
described elsewhere [15]. Important for our present
discussion is that each GlobeDoc has an associated object-
centric coherence model, which is implemented by means
of the replication and communication objects described in
section 2.2.1. In addition, implementations are provided to
support client-centric coherence models as well.

3.1.3. System architecture. It is necessary to offer
storage facilities for the various components that comprise
a document. In particular, being a distributed shared object,
a GlobeDoc will generally consist of a number of replicas,
each replica located at a different machine. Ignoring security
issues for now, a replica is organized as a local object,
consisting of a semantics subobject, a replication subobject,
a communication subobject, and a control subobject, as

Figure 3. A system model for replicated Globe Web documents
(GlobeDocs).

explained in section 2.2.1. In our model, each replica is
kept at astore. In principle, clients may perform read and
write operations at any store where the document resides, that
is, where a replica is located. We distinguish three different
types of stores:

Permanent stores implement persistence of a Globe-
Doc. This means that, if there is currently no client bound
to the document, the document will be kept only at its
associated permanent stores. The permanent stores keep
replicas consistent according to the object-centric coherence
model that the document offers to its clients. A Web server
is an example of a permanent store.

Object-initiated stores are installed as the result of
the document’s global replication policy. Replicas are kept
consistent independent of clients although these stores may,
for performance reasons, support a weaker coherence model
than the one guaranteed by the permanent stores. A typical
example of an object-initiated store is a mirrored Web site.

Client-initiated stores are comparable to caches. They
are installed independent of the replication policy of the
document and fall under the regime of the client processes
that read and update the document. A sitewide cache at a
Web proxy is an example of a client-initiated store.

Stores are organized in a layered fashion as shown in
figure 3. This architecture allows us to separate replicas
managed by servers (permanent and object-initiated stores)
from those managed by clients (client-initiated stores).
Whereas permanent stores must implement a document’s
coherence model, object-initiated and client-initiated stores
may offer weaker coherence, but perhaps offering the benefit
of higher performance. Effectively, for some applications,
some delay in propagating a change is often acceptable. It
is generally up to the client to decide to which replica it will
bind.

3.1.4. Integration with the current Web. It is
important that GlobeDocs are integrated into the current Web
infrastructure such that they can be accessed and manipulated
by existing tools such as browsers. Our approach is to use
a filtering gateway that communicates with standard Web
clients (e.g. browsers), as shown in figure 4.

The main purpose of the gateway is to allow standard
Web clients that communicate through HTTP, to access

38

A scalable middleware solution for advanced wide-area Web services

Table 2. Interfaces offered by the semantics object of GlobeDocs.

Interface Description

Document interface Contains methods for listing, adding, and removing elements of a GlobeDoc
Content interface Contains methods for reading and writing the content of an element
Attribute interface Contains methods for attributes of elements, such as type, last modification date, etc

Figure 4. The general organization for integrating Globe Web services into the current Web.

Figure 5. Using Java-enabled browsers to interface to interactive GlobeDocs.

GlobeDocs. The gateway is a process that runs on a local
server machine and accepts regular HTTP requests for a
document. In our model, GlobeDocs are distinguished
from other Web resources through naming. A Globe
name is written as aGlobe URN, that is, a URN (or
URL) with globe as scheme identifier. So, for example,
globe://cs.vu.nl/∼steen/globe/ could be the name
of our project’s home document, constructed as a distributed
shared object.

The gateway accepts all URLs and Globe URNs.
Normal URLs are simply passed to existing (proxy) servers,
whereas Globe URNs are used to actually bind to the
named distributed shared object. Because most browsers
cannot handle extensions to the URL name space, we are
forced to build a front end that translates Globe URNs to
a form that is embedded in an HTTP URL. For example,
globe://cs.vu.nl/∼steen/globe/ is embedded into
the HTTP URL http://globe.cs.vu.nl/∼steen/
globe/. When a Globe URN is passed to the gateway, the
gateway binds to the GlobeDoc named by that URN, and
passes the document’s state in HTML form to the browser.
In this way clients are unaware of the fact that they have
actually accessed a distributed shared object.

The drawback of this approach is that we are constrained
to the functionality of Web clients. In particular, this
means that it may be hard to support GlobeDocs containing
interactive parts. Ideally, we can make use of extensible

browsers that can dynamically download the necessary
support code for actually binding to distributed shared objects
and subsequently presenting the object’s interfaces to the
user. As an alternative, we may assume that Web clients
support Java. In that case, a GlobeDoc having interactive
content provides a Java applet that is downloaded into
the client’s browser, and which subsequently presents the
object’s interfaces in any way that is felt appropriate by the
developer of the document. Effectively, we are extending
the distributed shared object to the Web client by means of a
simple Java applet instead of using a Globe local object. This
situation is shown in figure 5, and is the approach followed
in our prototype.

3.2. Constructing a GlobeDoc

There are many ways to actually construct a GlobeDoc and
make it available as a distributed shared object. In the
following, we outline one such solution.

3.2.1. Constructing the first replica. Completely
analogous to the construction of Web pages, a GlobeDoc is
constructed by first providing all the necessary content. This
includes HTML files containing hyperlinks, files containing
executable code, files for images, audio, etc. All these content
files are then collected into astate archive. Effectively, a
state archive is a structured representation of the information

39

M van Steenet al

offered by a document. In our initial set-up, a state archive
is transferred as a whole to clients, although it will also be
possible to transfer only those parts that a client needs.

The state archive forms the actual content, that is, the
state of a semantics object. Besides providing the state
archive, a developer will also construct definitions of the
interfaces containing the methods that give access to a
document’s content. In the case that the GlobeDoc consists
of only noninteractive data, such as HTML text, animations,
etc, all interfaces and their implementations are generated
automatically from the archive. For interactive parts, such
as editors, spreadsheets, whiteboards, and calculators, a
developer explicitly specifies interfaces in the Globe Interface
Definition Language (Globe IDL). Our IDL resembles those
of CORBA and ILU, but has been tailored to describe local
as well as remote interfaces.

The implementation of IDL interfaces is described by
means of the Globe Object Definition Language (Globe
ODL). We support implementations written in C and Java.
Note that a developer may provide several implementations
of the same interface. For example, clients of a document
containing a calculator may be offered a choice between an
interpreted and a compiled version.

A state archive combined with the appropriate interfaces
and their implementations is in fact a semantics object. We
separate the interfaces and implementations from the actual
state by collecting the former in aclass archive. A class
archive not only contains implementations, but also identifies
how those implementations are to be (down)loaded by a
client. For example, it may identify a specific class loader
that first needs to be installed in the client’s address space.

Taking the interface definitions of the semantics
subobject, we then generate one or more implementations
for the control subobject, and add those to the class archive.

The next important step is to select an object-centric
coherence model for the GlobeDoc, and add implementations
for the replication and communication subobject of that
model to the class archive. In addition, implementations of
the client-centric coherence models that will be supported are
also added to the class archive. We envisage that a developer
will generally choose default implementations provided as
part of the development kit for documents, and possibly
fine-tune those to specific requirements. However, there is
nothing that prevents a developer from providing his own
implementation of a coherence model.

As we have described so far, a Web document consists
of a separate state and class archive. Of course, it is also
possible to construct more than one state or class archive, or
alternatively to combine them into a single archive. For our
present discussion we ignore such alternatives.

3.2.2. Making a GlobeDoc available worldwide. Having
state and class archives allows us to actually construct a
distributed shared object to which clients can bind. First,
we make the class archive available by storing it in one or
more implementation repositories. Such a repository can
be as simple as an ftp-able file system, or as sophisticated as a
worldwide distributed database. We assume that when a class
archive is stored, the repository returns animplementation

handle that can be uniquely resolved to the archive. We
return to this aspect below.

The state and class archives are initially combined at
one permanent store, where the first replica is subsequently
instantiated. The store returns a network address that can be
used to contact the replica. If the store is willing to make the
class archive available as well, that is, it is willing to also act
as an implementation repository, it will additionally return
an implementation handle. At this point, we have actually
created a distributed shared object. More replicas can be
registered at other permanent stores, provided those stores
cooperate in keeping the replicas consistent. In principle, this
requires the stores to run the implementation of the coherence
model as contained in the class archive forming part of the
replica.

The distributed shared object is registered at the Globe
location service, which subsequently returns an object
handle. A network address that has been returned by
a permanent store is taken together with one or more
implementation handles as returned by the repositories to
form a contact address. Note that the implementation handles
implicitly describe the protocol by which the object can be
contacted. These contact addresses are subsequently inserted
into the location service so that they can be looked up by
clients. The final step consists of registering the object handle
at one or more (worldwide) naming services.

3.3. Client-to-document binding

Binding a client to a GlobeDoc is now fairly straightforward.
We first describe the simple binding process in which a client
contacts a document at one of its permanent stores. We then
proceed by explaining how client-initiated stores, such as
caches, can be used.

3.3.1. Simple binding through permanent stores. A
contact address generally consists of a network address and
protocol information that allows a client to contact an object.
In the case of GlobeDocs, the protocol information consists
of one or more implementation handles. After looking
up a contact address for a document through the naming
and location service, a client passes the implementation
handles contained in that contact address to a local
implementation service. This service is responsible for
selecting and downloading an appropriate implementation.
An implementation may not be appropriate for several
reasons. For example, the client or the local implementation
service may require that an implementation has been certified
by a specific authority. Another possible reason is that an
implementation does not match the architecture of the client
machine, or that specific libraries are not available.

An implementation handle implicitly refers to the
repository where the class archive is stored. In the case
of simple repositories, such as an ftp-able file system, the
implementation handle may consist of an IP address and a
pathname identifying the class archive. More sophisticated
solutions exist as well. For example, an object-oriented
database may offer a front end to its clients in the form of
a distributed shared object. In that case, an implementation
handle may contain an object handle that is to be resolved to a

40

A scalable middleware solution for advanced wide-area Web services

contact address for that front end. The local implementation
service must then first bind to the front end following the
complete binding procedure as described in section 2.2.2.

After an implementation has been selected and the client
has loaded the class archive into its address space, the
implementations (i.e., classes and objects) are instantiated,
followed by a preliminary initialization by means of the
network address that was part of the contact address. The
client has now set up a connection to the replica through the
permanent store. The store, in turn, activates the replica, after
which the necessary state as contained in the state archive
is shipped to the client. At that point, the client has the
interfaces of the GlobeDoc at its disposal and can invoke the
document’s methods.

3.3.2. Advanced binding: selecting a store. A client
should also be allowed to cache GlobeDocs independently of
the object-centric coherence model offered by that document.
In the case where caching is to be done at the client
only, we can basically follow the approach for binding
through a permanent store. The client need only provide an
implementation for locally storing its copy of the document’s
semantics object.

Making use of a proxy cache, as is common for many
client Web sites, is somewhat more intricate. We have
adopted the following model. A process called acache
manager, that is prepared to offer caching facilities, registers
itself as acache manager object at the Globe location
service. A cache manager object is just a distributed shared
object whose contact address is made only locally available
by the location service. A client process wishing to bind to
a GlobeDoc using local caching facilities simply passes the
document’s object handle to the location service, indicating
that it is also prepared to accept contact addresses of local,
sitewide cache manager objects.

When a contact address is returned, the client binds to
the object associated with the contact address, as usual. The
contact address indicates whether the client is binding to a
cache manager object, or to the GlobeDoc. In the former
case, the client passes the document’s object handle to the
cache manager object. The cache manager, in turn, will bind
to the GlobeDoc at one of the document’s contact addresses.

When the cache manager is bound to the GlobeDoc, it
inserts one or more local contact addresses for the document
at the location service. The client that originally initiated the
binding process is now instructed to bind to the document at
an address offered by the cache manager, and to unbind from
the cache manager object.

Note that after the cache manager is bound to the
GlobeDoc, subsequent clients can bind directly to the
document through its local contact address(es) as inserted
into the location service by the cache manager. There is no
need to bind to the cache manager object as before.

4. Related work

To alleviate scalability problems in the Web, research
has mainly concentrated on traditional caching techniques.
Replication has been applied in the form of mirroring
popular Web sites. Recently, it has been recognized that

more advanced forms of caching and replication are needed.
Wessels [32] proposes to allow servers to grant or deny a
client permission to cache a resource. Push-caching [9]
allows popular resources to be optimally distributed to other
servers based on knowledge of the resource’s access patterns.
In a similar fashion, Baentschet al [2] propose a replication
scheme in which replicas are pushed to a collection of
replication servers, and in which clients locate the nearest
server for downloading a Web page. Harvest caches [6]
provide a hierarchically organized solution, and are currently
gaining popularity in the Web. An interesting approach is to
keep client caches up to date by having servers invalidate
entries on updates [4]. This approach is also followed in
AFS, which the designers claim can be used as the basis for
building strongly consistent Web applications [26].

Research has also concentrated on replication schemes
for specific classes of Web resources. For example, the
distribution point model [7] is tailored to active replication of
relatively static sets of bulk, non-real-time data. It is mainly
applicable to magazine-like Web documents such as those
that appear as electronic periodical publications.

Hardly any proposals exist that allow each resource to
have its own replication scheme. In the Bayou system a
mobile client can specify coherence requirements for data
that are replicated and distributed across multiple servers [28,
23]. We have adopted some of the results of the Bayou
project in our own work. In the W3Objects system, Web
resources are encapsulated into distributed objects that can
have their own replication scheme [11]. Their model is
strongly based on the notion of remote objects, which we
argue is less flexible than a model in which objects can be truly
physically distributed. Also, where we strive for distribution
transparency, the developers of the W3Objects system aim at
a highly visible caching mechanism [5].

In general, much work is currently being done
to incorporate CORBA and similar distributed object
technologies into the Web. It is especially the combination
of Java and CORBA that is receiving much attention [8].
These approaches hardly tackle the problem of scalability,
and do not provide solutions for caching, replication and
consistency. In this respect, a perhaps more interesting
development is the proposed HTTP-ng protocol [27], the goal
of which is to present a new object-based protocol for the
Web. In principle, HTTP-ng will allow clients and servers to
specify options for caching individual Web pages.

A solution that comes close to ours is the work based on
fragmented objects [19]. Fragmented objects, like Globe’s
distributed shared objects, are physically distributed across
multiple machines, encapsulating their own distribution
policy. However, fragmented objects have not been designed
for worldwide scalability and do not address caching and
replication as we do.

5. Future research

We have presented Globe’s distributed shared objects, in
the form of GlobeDocs, as a solution to a number of the
Web’s scalability problems. A GlobeDoc is a physically
distributed object encapsulating one or more Web resources.
Each document takes care of its own distribution issues such

41

M van Steenet al

as caching, replication, consistency and communication. In
addition, our approach provides a flexible and extensible
approach for implementing future Web resources.

To assess our research, we have developed a simple
prototype implementation of a Globe distributed Web service
in Java. The main purpose of this prototype was to obtain
feedback on the feasibility of our approach, and also to gain
insight into possible implementations. Currently, we are
developing a toolkit in Java that will allow us to more easily
construct the GlobeDocs as described in this paper.

There are still a number of open issues that we need
to address. We are investigating how we can incorporate
security into our framework such that security policies can
be attached to individual GlobeDocs in a similar fashion
to distribution policies. Also, more research is needed
with respect to different caching and replication policies,
and how policies can be implemented efficiently in a
worldwide system. With respect to Globe-based distributed
Web services, we also need support for partitioning and
distributing state archives, as well as user-oriented tools that
replace much of the manual construction of GlobeDocs.

References

[1] Ahamad M, Bazzi R, John R, Kohli P and Neiger G 1992
The power of processor consistencyTechnical Report
GIT-CC-92/34, College of Computing, Georgia Institute
of Technology

[2] Baentsch M, Baum L, Molter G, Rothkugel S and Sturm P
1997 Enhancing the Web’s infrastructure: from caching to
replicationIEEE Internet Comput. 1 18–27

[3] Budhijara N, Marzullo K, Schneider F and Toueg S 1993 The
primary-backup approachDistributed Systems 2nd edn, ed
S Mullender (Wokingham: Addison-Wesley) pp 199–216

[4] Cao P and Liu C 1998 Maintaining strong cache consistency
in the World Wide WebIEEE Trans. Comput. 47 445–57

[5] Caughey S, Ingham D and Little M 1997 Flexible open
caching for the WebComput. Networks ISDN Syst. 29
1007–17

[6] Chankhunthod A, Danzig P, Neerdaels C, Schwartz M and
Worrell K 1995 A hierarchical Internet object cache
Technical Report CU-CS-766-95, Department of
Computer Science, University of Colorado, Boulder, CO

[7] Donnelley J 1995 WWW media distribution via hopwise
reliable multicastComput. Networks ISDN Syst. 27 781–8

[8] Evans E and Rogers D 1997 Using Java applets and CORBA
for multi-user distributed applicationsIEEE Internet
Comput. 1 43–55

[9] Gwertzman J and Seltzer M 1996 The case for geographical
push-cachingProc. 5th Hot Topics in Operating Systems
(Orcas Island, WA) (New York: IEEE) pp 51–5

[10] Hutto P and Ahamad M 1990 Slow memory: weakening
consistency to enhance concurrency in distributed shared
memoriesProc. 10th Int. Conf. on Distributed Computing
Systems (Paris) (New York: IEEE) pp 302–11

[11] Ingham D, Little M, Caughey S and Shrivastava S 1995
W3Objects: bringing object-oriented technology to the
WebThe Web J. 1 89–105

[12] ISO 1995 Open distributed processing reference
model—part 3: architectureInternational Standard
ISO/IEC IS 10746-3

[13] Janssen B and Spreitzer M 1996ILU Reference Manual
Xerox Corporation

[14] Jul E, Levy H, Hutchinson N and Black A 1988 Fine-grained
mobility in the Emerald systemACM Trans. Comput. Syst.
6 109–33

[15] Kermarrec A, Kuz I, van Steen M and Tanenbaum A 1998 A
framework for consistent, replicated Web objectsProc.
18th Int. Conf. on Distributed Computing Systems
(Amsterdam) (New York: IEEE) pp 276–84

[16] Kiczales G 1992 Towards a new model of abstraction in the
engineering of softwareProc. Int. Workshop on New
Models for Software Architecture (IMSA): Reflection and
Meta-Level Architecture (Tokyo)

[17] Lamport L 1979 How to make a multiprocessor computer
that correctly executes multiprocessor programsIEEE
Trans. Comput. 29

[18] Lipton R and Sandberg J 1988 PRAM: a scalable shared
memoryTechnical Report CS-TR-180-88, Princeton
University

[19] Makpangou M, Gourhant Y, Le Narzul J-P and Shapiro M
1994 Fragmented objects for distributed abstractions ed
T Casavant and M SinghalReadings in Distributed
Computing Systems (Los Alamitos, CA: IEEE Computer
Society Press) pp 170–86

[20] Neuman B 1994 Scale in distributed systemsReadings in
Distributed Computing Systems ed T Casavant and
M Singhal (Los Alamitos, CA: IEEE Computer Society
Press) pp 463–89

[21] ObjectSpace Inc. 1998Voyager 2.0 User Guide
[22] OMG 1998 The common object request broker: architecture

and specification, revision 2.2OMG Document Technical
Report 98-07-01, Object Management Group

[23] Petersen K, Spreitzer M, Terry D and Theimer M 1996
Bayou: replicated database services for world-wide
applicationsProc. 7th SIGOPS European Workshop
(Connemara, Ireland) (New York: ACM) pp 275–80

[24] Radia S, Madnay P and Powell M 1993 Persistence in the
spring systemProc. 3rd Int. Workshop on Object
Orientation in Operating Systems (Asheville, NC) (New
York: IEEE)

[25] Schneider F 1990 Implementing fault-tolerant services using
the state machine approach: a tutorialACM Comput.
Surveys 22 299–320

[26] Spasojevic M, Bowman M and Spector A 1994 Using a
wide-area file system within the World-Wide Web
Comput. Networks ISDN Syst. 26 781–8

[27] Spero S HTTP-NG architectural overview,
http://www.w3.org/Protocols/HTTP-NG/
http-ng-arch.html

[28] Terry D B, Demers A J, Petersen K, Spreitzer M J, Theimer
M M and Welsh B B 1994 Session guarantees for weakly
consistent replicated dataProc. 3rd Int. Conf. on Parallel
and Distributed Information Systems (Austin, TX) (New
York: IEEE) pp 140–9

[29] van Steen M, Hauck F, Homburg P and Tanenbaum A 1998
Locating objects in wide-area systemsIEEE Commun.
Mag. 36 (1) 104–9

[30] van Steen M, Homburg P and Tanenbaum A 1999 The
architectural design of Globe: a wide-area distributed
systemIEEE Concur. 7 (1) 70–8

[31] van Steen M, Hauck F J, Ballintijn G and Tanenbaum A S
1998 Algorithmic design of the Globe wide-area location
serviceComput. J. 41 297–310

[32] Wessels D 1995 Intelligent caching for World-Wide Web
objectsProc. Internet Networking (INET) ’95 (Honolulu,
HI) (Reston, VA: Internet Society)

42

