638 research outputs found
A Cylindrical GEM Inner Tracker for the BESIII experiment at IHEP
The Beijing Electron Spectrometer III (BESIII) is a multipurpose detector
that collects data provided by the collision in the Beijing Electron Positron
Collider II (BEPCII), hosted at the Institute of High Energy Physics of
Beijing. Since the beginning of its operation, BESIII has collected the world
largest sample of J/{\psi} and {\psi}(2s). Due to the increase of the
luminosity up to its nominal value of 10^33 cm-2 s-1 and aging effect, the MDC
decreases its efficiency in the first layers up to 35% with respect to the
value in 2014. Since BESIII has to take data up to 2022 with the chance to
continue up to 2027, the Italian collaboration proposed to replace the inner
part of the MDC with three independent layers of Cylindrical triple-GEM (CGEM).
The CGEM-IT project will deploy several new features and innovation with
respect the other current GEM based detector: the {\mu}TPC and analog readout,
with time and charge measurements will allow to reach the 130 {\mu}m spatial
resolution in 1 T magnetic field requested by the BESIII collaboration. In this
proceeding, an update of the status of the project will be presented, with a
particular focus on the results with planar and cylindrical prototypes with
test beams data. These results are beyond the state of the art for GEM
technology in magnetic field
Identification of particles with Lorentz factor up to with Transition Radiation Detectors based on micro-strip silicon detectors
This work is dedicated to the study of a technique for hadron identification
in the TeV momentum range, based on the simultaneous measurement of the
energies and of the emission angles of the Transition Radiation (TR) X-rays
with respect to the radiating particles. A detector setup has been built and
tested with particles in a wide range of Lorentz factors (from about to
about crossing different types of radiators. The measured
double-differential (in energy and angle) spectra of the TR photons are in a
reasonably good agreement with TR simulation predictions.Comment: 31 pages, 12 figures, paper published on Nuclear Instruments &
Methods
Security challenges of small cell as a service in virtualized mobile edge computing environments
Research on next-generation 5G wireless networks is currently attracting a lot of attention in both academia and industry. While 5G development and standardization activities are still at their early stage, it is widely acknowledged that 5G systems are going to extensively rely on dense small cell deployments, which would exploit infrastructure and network functions virtualization (NFV), and push the network intelligence towards network edges by embracing the concept of mobile edge computing (MEC). As security will be a fundamental enabling factor of small cell as a service (SCaaS) in 5G networks, we present the most prominent threats and vulnerabilities against a broad range of targets. As far as the related work is concerned, to the best of our knowledge, this paper is the first to investigate security challenges at the intersection of SCaaS, NFV, and MEC. It is also the first paper that proposes a set of criteria to facilitate a clear and effective taxonomy of security challenges of main elements of 5G networks. Our analysis can serve as a staring point towards the development of appropriate 5G security solutions. These will have crucial effect on legal and regulatory frameworks as well as on decisions of businesses, governments, and end-users
Operational experience with the GEM detector assembly lines for the CMS forward muon upgrade
The CMS Collaboration has been developing large-area triple-gas electron multiplier (GEM) detectors to be installed in the muon Endcap regions of the CMS experiment in 2019 to maintain forward muon trigger and tracking performance at the High-Luminosity upgrade of the Large Hadron Collider (LHC); 10 preproduction detectors were built at CERN to commission the first assembly line and the quality controls (QCs). These were installed in the CMS detector in early 2017 and participated in the 2017 LHC run. The collaboration has prepared several additional assembly and QC lines for distributed mass production of 160 GEM detectors at various sites worldwide. In 2017, these additional production sites have optimized construction techniques and QC procedures and validated them against common specifications by constructing additional preproduction detectors. Using the specific experience from one production site as an example, we discuss how the QCs make use of independent hardware and trained personnel to ensure fast and reliable production. Preliminary results on the construction status of CMS GEM detectors are presented with details of the assembly sites involvement
Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis
Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions
Cisplatin and Doxorubicin Induce Distinct Mechanisms of Ovarian Follicle Loss; Imatinib Provides Selective Protection Only against Cisplatin
Chemotherapy treatment in premenopausal women has been linked to ovarian follicle loss and premature ovarian failure; the exact mechanism by which this occurs is uncertain. Here, two commonly used chemotherapeutic agents (cisplatin and doxorubicin) were added to a mouse ovary culture system, to compare the sequence of events that leads to germ cell loss. The ability of imatinib mesylate to protect the ovary against cisplatin or doxorubicin-induced ovarian damage was also examined.Newborn mouse ovaries were cultured for a total of six days, exposed to a chemotherapeutic agent on the second day: this allowed for the examination of the earliest stages of follicle development. Cleaved PARP and TUNEL were used to assess apoptosis following drug treatment. Imatinib was added to cultures with cisplatin and doxorubicin to determine any protective effect.Histological analysis of ovaries treated with cisplatin showed oocyte-specific damage; in comparison doxorubicin preferentially caused damage to the granulosa cells. Cleaved PARP expression significantly increased for cisplatin (16 fold, p<0.001) and doxorubicin (3 fold, p<0.01). TUNEL staining gave little evidence of primordial follicle damage with either drug. Imatinib had a significant protective effect against cisplatin-induced follicle damage (p<0.01) but not against doxorubicin treatment.Cisplatin and doxorubicin both induced ovarian damage, but in a markedly different pattern, with imatinib protecting the ovary against damage by cisplatin but not doxorubicin. Any treatment designed to block the effects of chemotherapeutic agents on the ovary may need to be specific to the drug(s) the patient is exposed to
Test beam performance measurements for the Phase I upgrade of the CMS pixel detector
A new pixel detector for the CMS experiment was built in order to cope with the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking with a reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and allows operation at low comparator thresholds. In this paper, comprehensive test beam studies are presented, which have been conducted to verify the design and to quantify the performance of the new detector assemblies in terms of tracking efficiency and spatial resolution. Under optimal conditions, the tracking efficiency is (99.95 ± 0.05) %, while the intrinsic spatial resolutions are (4.80 ± 0.25) μm and (7.99 ± 0.21) μm along the 100 μm and 150 μm pixel pitch, respectively. The findings are compared to a detailed Monte Carlo simulation of the pixel detector and good agreement is found.Peer reviewe
- …
