
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cisplatin and Doxorubicin Induce Distinct Mechanisms of
Ovarian Follicle Loss; Imatinib Provides Selective Protection
Only against Cisplatin

Citation for published version:
Morgan, S, Lopes, F, Gourley, C, Anderson, R & Spears, N 2013, 'Cisplatin and Doxorubicin Induce Distinct
Mechanisms of Ovarian Follicle Loss; Imatinib Provides Selective Protection Only against Cisplatin' PLoS
One, vol 8, no. 7, e70117. DOI: 10.1371/journal.pone.0070117

Digital Object Identifier (DOI):
10.1371/journal.pone.0070117

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
PLoS One

Publisher Rights Statement:
Copyright: © 2013 Morgan et al. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2017

http://dx.doi.org/10.1371/journal.pone.0070117
http://www.research.ed.ac.uk/portal/en/publications/cisplatin-and-doxorubicin-induce-distinct-mechanisms-of-ovarian-follicle-loss-imatinib-provides-selective-protection-only-against-cisplatin(b1e9701f-fbd7-4b18-841f-78a20afb8416).html


Cisplatin and Doxorubicin Induce Distinct Mechanisms of
Ovarian Follicle Loss; Imatinib Provides Selective
Protection Only against Cisplatin
Stephanie Morgan1, Federica Lopes1, Charlie Gourley2, Richard A. Anderson3, Norah Spears1*

1Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland, United Kingdom, 2 Edinburgh Cancer Research Centre, University of Edinburgh,

Edinburgh, Scotland, United Kingdom, 3MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, Scotland, United Kingdom

Abstract

Purpose: Chemotherapy treatment in premenopausal women has been linked to ovarian follicle loss and premature ovarian
failure; the exact mechanism by which this occurs is uncertain. Here, two commonly used chemotherapeutic agents
(cisplatin and doxorubicin) were added to a mouse ovary culture system, to compare the sequence of events that leads to
germ cell loss. The ability of imatinib mesylate to protect the ovary against cisplatin or doxorubicin-induced ovarian damage
was also examined.

Experimental design: Newborn mouse ovaries were cultured for a total of six days, exposed to a chemotherapeutic agent
on the second day: this allowed for the examination of the earliest stages of follicle development. Cleaved PARP and TUNEL
were used to assess apoptosis following drug treatment. Imatinib was added to cultures with cisplatin and doxorubicin to
determine any protective effect.

Results: Histological analysis of ovaries treated with cisplatin showed oocyte-specific damage; in comparison doxorubicin
preferentially caused damage to the granulosa cells. Cleaved PARP expression significantly increased for cisplatin (16 fold,
p,0.001) and doxorubicin (3 fold, p,0.01). TUNEL staining gave little evidence of primordial follicle damage with either
drug. Imatinib had a significant protective effect against cisplatin-induced follicle damage (p,0.01) but not against
doxorubicin treatment.

Conclusion: Cisplatin and doxorubicin both induced ovarian damage, but in a markedly different pattern, with imatinib
protecting the ovary against damage by cisplatin but not doxorubicin. Any treatment designed to block the effects of
chemotherapeutic agents on the ovary may need to be specific to the drug(s) the patient is exposed to.
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Introduction

Premature ovarian failure (POF, also termed primary ovarian

insufficiency; POI) is a common long-term adverse effect of

chemotherapy treatment in premenopausal women [1] with

consequences for both fertility and non-reproductive health such

as osteoporosis [2] and cardiovascular disease [3]. The risk of

developing POF is dependent on chemotherapy regimen [4], drug

dosage [5,6] and patient age [7]. Whilst it is well recognised that

chemotherapy treatment can lead to POF due to loss of ovarian

follicles, the exact mechanism by which this occurs is less certain

[8]. Such knowledge is invaluable in the search to develop

potential treatments to protect the ovary from chemotherapy-

induced damage. The aim here is to determine the precise ovarian

effects of two of the drugs commonly used to treat cancers in

premenopausal women, cisplatin and doxorubicin.

By birth, the ovary has a fixed population of germ cells (oocytes)

contained within follicles. These are formed prenatally at the

primordial stage, consisting of an immature oocyte in meiotic

arrest, surrounded by a few flattened somatic (granulosa) cells.

Primordial follicles constitute the resting pool of female germ cells

present for the duration of a female’s reproductive lifespan. At any

one time, a small cohort is activated to grow, with the transition to

the growing primary follicle stage marked by somatic cells

becoming cuboidal and proliferating to fully surround the growing

oocyte. Somatic cells continue to proliferate and form increasing

numbers of layers around the oocyte, thecal cells are recruited

from the interstitial stroma to surround the follicle and, as the

follicle increases in size, fluid-filled patches form within the

granulosa cell layers to create an antral cavity.

Numerous cell types in the ovary may be potential targets for

damage by chemotherapeutic agents. It is often assumed that the

primary cell type damaged is the oocyte within immature follicles,

since ultimately loss of these leads to POF. There is, however,

limited available evidence for this, as most studies showing oocyte

damage used mature ovulated oocytes [9,10], whereas in women,
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what is of importance is damage to oocytes contained within

ovarian follicles. Within follicles, somatic cells could be the

primary target [11,12], leading to germ cell death and hence

follicle loss indirectly. Also of importance is the follicle stage most

at risk from chemotherapy-induced damage. Most studies

examining follicles have focused on loss of primordial follicles

[13,14], as it is this that ultimately leads to POF. However,

reduction of the primordial follicle pool could be due to either

direct primordial follicle damage or to an indirect effect; damage

to more mature, growing follicles would lead to increased

recruitment of primordial follicles out of the resting pool and

hence to premature depletion of that resting follicle reserve [8,15].

Proliferating somatic cells within growing follicles also represent a

more logical target for chemotherapy-induced damage than

mitotically inactive cells. A better understanding of the mechanism

by which chemotherapy-induced follicle loss occurs is vital for the

development of potential protective treatments for those women at

risk.

The work described here examines the effects of two

chemotherapeutic drugs commonly used in the treatment of

premenopausal women, cisplatin and doxorubicin. Cisplatin is a

DNA cross-linking agent commonly used in the treatment of

sarcomas and germ cell tumours. Its precise mechanism of action

is not entirely clear, although it is known to intercalate with DNA

strands causing crosslinking and adduct formation [16]. It is

considered moderately gonadotoxic, and in a postnatal in vitro

mouse ovary model can cause massive oocyte death [17].

Doxorubicin is an anthracycline which intercalates with DNA

and prevents its replication and transcription [9]. It is used to treat

a variety of cancers including breast cancer, lymphomas and

leukaemias and recent evidence suggests that it is moderately

ovotoxic [18]. Mature ovulated oocytes treated with doxorubicin

undergo rapid DNA damage and cytoplasmic changes associated

with apoptosis [10]; its action on immature follicles within the

ovary is less clear although a recent study of human primordial

follicles showed apoptotic damage to both oocytes and granulosa

cells [19].

This work also investigates the ability of imatinib mesylate

(called imatinib hereafter) to protect the ovary against damage

induced by either cisplatin or doxorubicin. Imatinib is a tyrosine

kinase inhibitor, used as the primary treatment for chronic

myeloid leukaemia due to its inhibition of the tyrosine kinase

BCR-ABL [20]. Imatinib can also inhibit c-Abl, PDGF receptor

and c-kit [21], all of which can affect basic cellular function (cell

signalling, proliferation and differentiation) including within

ovarian follicles [22,23]. Some recent work indicates that it has

a protective effect against cisplatin-induced follicle loss [17,24]

although this has been disputed [25]. The ability of imatinib to

protect against doxorubicin-induced ovarian damage is currently

unknown.

The aim of this study was to investigate the mechanisms by

which cisplatin and doxorubicin cause follicle loss using an in vitro

system to culture mouse ovaries. The advantage of using such a

culture controlled environment is that it allows precise determi-

nation of the cell type first damaged by the drugs while allowing

follicles to develop in a highly physiological manner [26]. The

system used here, culturing ovaries from newborn mice, supports

follicle formation, growth initiation and development to the

primary-secondary phase [27].

Materials and Methods

Animals
Ethics statement. This work was approved by the University

of Edinburgh’s Local Ethical Review Committee. Animals were

provided with food and water ad libitum, and kept in accordance

with UK Home Office regulations. C57Bl6J mice were housed in

an environmentally-controlled room on a 14-hour light, 10-hour

dark photoperiod.

Ovary Culture
Newborn female mice were culled by decapitation and ovaries

dissected out into Leibovitz L-15 dissection medium (Invitrogen,

Paisley UK) supplemented with 3 mg ml21 bovine serum albumin

(Sigma Aldrich Ltd, Dorset UK). Ovaries were cultured on

Whatman Nucleopore membranes (Camlab Ltd, Cambridge UK;

Whatman Nucleopore Polycarbonate Membranes 13 mm 8.0 mm)

floating on 1 ml a-MEM medium (Invitrogen, Paisley UK)

supplemented with 3 mg ml21 bovine serum albumin (Sigma

Aldrich), in a 24 well plate (Greiner Bio-one, Stonehouse UK)

incubated at 37uC, 5% CO2. Information on follicle composition

in control ovaries over the course of the culture period is shown in

Figure S1.

After 24 h in culture (Day 1), medium was supplemented with

varying doses of either cisplatin or doxorubicin-HCl, both from

Sigma Aldrich, both first dissolved in sterile water (Day 2).

Concentration ranges for each drug was determined from

preliminary experiments finding the lowest dose leading to death

of the majority of follicles; cisplatin was added to produce final

concentrations of 0, 0.1, 0.5, 1 or 5 mg ml21 and doxorubicin to

produce final concentrations of 0, 0.01, 0.05, 0.1 or 0.2 mg ml21.

Following the 24 h of drug exposure (Day 2), ovaries were either

snap-frozen for protein extraction, fixed for TUNEL analysis or

moved into drug free culture for a further four days (Days 3–6),

with 50% of medium changed every other day.

For the cultures containing imatinib mesylate (VWR Interna-

tional Ltd UK, dissolved in sterile water), imatinib was added to

produce a final concentration of 3 mg ml21. Dosage was

determined from unpublished preliminary results indicating that

this was the highest dose at which no significant morphological

damage was seen when compared to control cultures. Imatinib

was added to the medium on Days 1 to 3 of culture, with cisplatin

or doxorubicin also added only on Day 2 of culture for 24 hours as

in the previous experiments. Ovaries were then moved into drug-

free culture for a further 3 days (Days 4–6) with 50% of medium

changed every other day.

Protein Extraction and Western Blotting
Frozen ovaries were homogenised in 20 ml lysis buffer

(containing 50 mM HEPES buffer, 10% Triton X, 50 mM NaCl,

Protease inhibitor cocktail and protease inhibitors [I and II], H2O;

all purchased from Sigma Aldrich Ltd except for Protease

inhibitor cocktail which was purchased from Roche Diagnostic

Ltd) and centrifuged at 13000 rpm for 20 mins: supernatant was

used for Western blotting. Approximately 10 mg of protein from

each ovary was loaded onto a 7% acrylamide gel and run at

30 mA at room temperature. Protein was transferred onto a

nitrocellulose membrane and blocked using 5% powdered milk

(w/v) in phosphate buffered saline (PBS, pH7.3, 160 mM NaCl,

3 mM KCl, 8 mM Na2HPO4, 1 mM KH2PO4). PARP rabbit

polyclonal antibody (New England Biolabs, Hertfordshire UK)

was added at 1:1000 dilution: this antibody to PARP detects both

the full length (116 kD) and cleaved (89 kD) form. b-actin rabbit

polyclonal antibody (Abcam, Cambridge UK) was added at

Ovarian Damage from Cisplatin and Doxorubicin
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1:5000 dilution as a loading control. Membranes were then

incubated overnight at 4uC. After washing in PBS, membranes

were incubated with Alexafluor anti-rabbit 750 (Invitrogen, UK)

at 1:2000 for 1 h, membranes re-washed and dried, and imaging

and analysis carried out using a Li-cor scanner and Odyssey v1.2

software (Li-cor Biosciences, US). 89 kD bands were analysed to

determine expression of Cleaved PARP, with 45 kD bands

analysed to determine expression of b-actin.

Histological Follicle Assessment
Ovaries cultured for six days were placed in Bouins fixative for

90 mins, paraffin wax-embedded, sectioned at 5 mm and stained

with haemotoxylin and eosin. Every sixth section was photo-

micrographed and follicle assessment and counts carried out. All

sections were assessed blind as to treatment. For the initial

experiments with cisplatin and doxorubicin, 5 ovaries were

assessed in each treatment group from 6 independent cultures.

For the imatinib experiments, 7 ovaries were assessed for each

treatment from 4 independent cultures.

A follicle was counted if the oocyte had a germinal vesicle

present in the section analysed. All counted follicles were assessed

for stage and health. For stage analysis, follicles were considered to

be at the primordial stages where the oocyte was clearly associated

with only pre-granulosa cells; the transitional stage where the

oocyte was surrounded by granulosa cells some of which were

flattened and some cuboidal; and at the primary stage where the

oocyte was surrounded by a complete layer of cuboidal granulosa

cells. Follicles were also classified by their morphological health,

using standard criteria [28,29]. In detail, a follicle was healthy if: a)

the oocyte was round and contained evenly stained cytoplasm; b)

there were no pyknotic granulosa cells (or no more than 1 for

primary follicles); and c) there was clear attachment between the

oocyte and its surrounding granulosa cells. Any follicle not

considered healthy (not passing all three criteria) was further

categorized as having an unhealthy oocyte only; unhealthy

granulosa cells only; or having both oocyte and granulosa cells

unhealthy. An oocyte was considered to be of poor health if it

exhibited any one of shrunken cytoplasm, heavy or uneven eosin

staining or no attachment between oocyte and its surrounding

somatic cells. The assessment of the health of granulosa cells was

dependent on follicle stage: for primordial and transitional follicles,

a follicle was assessed as unhealthy if it contained any clearly

pyknotic granulosa cell (out of the 3–6 present); for primary

follicles, a follicle was assessed as unhealthy if it contained 2/3 or

more clearly pyknotic granulosa cells (out of the 10–20 present).

Abercrombie correction was applied to raw counts multiplied by

frequency of section counted, in order to estimate total follicle

number [30].

TUNEL Analysis
Newborn mouse ovaries were placed in culture in control

medium, or treated with medium supplemented with 1 mg ml21

cisplatin or 0.1 mg ml21 doxorubicin during Day 2 of culture. The

second highest doses of chemotherapy drugs were used here to

induce an appreciable level of damage, but not the overwhelming

follicle loss seen at the highest doses. At the end of Day 2, ovaries

were washed in PBS (Invitrogen, UK, pH7.4, 1.06 mM KH2PO4,

155.17 mM NaCl, 2.97 mM Na2HPO4.7H2O), fixed in 10%

buffered formalin (Sigma Aldrich Ltd, UK) for 1 h, paraffin wax-

embedded, sectioned at 5 mm and every 12th section taken for

analysis. After dewaxing, sections were permeabilised with 10 ug

ml21 proteinase K in 10 mM Tris/HCl, then labelled with

TUNEL reagents according to manufacturer instructions (Roche

Diagnostics Ltd). Sections were then counterstained with DAPI

(Invitrogen, UK) and mounting medium applied (Vector Labora-

tories, Inc.). Sections were observed and images collected with a

Leica AS6000 fluorescent microscope (Leica Microsystems,

Germany). Sections were then washed in PBS and coverslips

gently removed for subsequent haematoxylin and eosin staining.

Sections were then re-observed and photomicrographs collected

using a Leica DMLB microscope equipped with Leica DFC480

camera (Leica Microsystems, Germany). Image analysis was

performed using ImageJ software.

Statistical Analysis
Graphpad prism was used for statistical analyses. Data

normality was assessed using Kolmogorov Smirnoff tests. In all

instances where raw data were not normally distributed, log

transformation was sufficient to normalise data. Normally

distributed data were then analysed using one way ANOVA to

determine if significant differences were present across treatments,

followed by Bonferroni post-hoc test where ANOVA was

statistically significant, and where analyses compared only planned

treatments (Imatinib experiments). All mean6sem and p values

are listed in Table S1.

Results

Cisplatin and Doxorubicin Induce Follicle Loss and
Unhealthy Follicles
Newborn ovaries were cultured for six days in control medium

or exposed to cisplatin or doxorubicin only on Day 2 of culture

(Fig. 1). Over the six days, most primordial follicles initiated

growth to the transitional or primary stage, with few reaching the

secondary stage. The proportion of follicles deemed morphological

unhealthy significantly increased with dosage for both cisplatin

and doxorubicin (Fig. 1Ai and Bi). To assess whether drug

treatment led to follicle loss, total follicle number was calculated

from histological analyses and log transformed for normality. Both

cisplatin and doxorubicin caused significant follicle loss, but with

different patterns of dose response (Fig. 1Aii and Bii). Cisplatin

induced significant loss of follicles only at the highest concentration

(5 mg ml21; p,0.01, n= 5), which induced poor health in almost

all follicles (Fig. 1A). In contrast doxorubicin resulted in a

significant decrease in follicle number (p,0.05, n= 5) even at a

dose which induced poor health in only around 30–35% of follicles

(0.05 mg ml21; Fig. 1B).

Cisplatin and Doxorubicin Target Different Follicle Stages
As both drug treatments led to increased numbers of unhealthy

follicles, they were further categorized to see if a particular follicle

class was affected by each drug (Fig. 2). Both drugs caused a

reduction in primordial follicle number to the point where, at the

highest doses there were insufficient present to meaningfully

analyse primordial follicle health (mean6sem number of primor-

dial follicles in 5 mg ml21 cisplatin group= 464, and in 0.2 mg
ml21 doxorubicin group= 161, vs control = 60620; n= 5).

Primordial follicle health was, therefore, assessed in a separate

study (see below). Further analysis was possible, though, for

transitional and primary follicles. Cisplatin caused a significant

increase in the percentage of morphologically unhealthy transi-

tional follicles only at the highest dose of cisplatin used (5 mg ml21;

p,0.001; n = 5), while there were a significant percentage of

unhealthy primary follicles at all doses (Fig. 2A). In contrast,

doxorubicin caused a significant increase in the percentage of both

transitional and primary follicles classified as morphologically

unhealthy from the second lowest dose (p,0.05 for transitional,

p,0.001 for primary; n= 5; Fig. 2B).

Ovarian Damage from Cisplatin and Doxorubicin
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Cisplatin and Doxorubicin affect Different Ovarian Cell
Types
In order to determine which specific follicular cell type was

targeted by the two drugs, follicles were further classified as

unhealthy due to: (a) the oocyte only; (b) granulosa cells only; or (c)

both the oocyte and granulosa cells. In ovaries treated with

cisplatin, unhealthy follicles were classified as such primarily due to

oocyte health (Fig. 3A), with significant increases in the percentage

of follicles with morphologically unhealthy oocytes seen at all doses

of cisplatin used (p,0.05 for the lowest doses, p,0.01 for 5 mg
ml21; n = 5). In marked contrast, doxorubicin primarily induced

follicles classified as unhealthy due to the granulosa cell health

(Fig. 3B), with significant increases in the percentage of follicles

with morphologically unhealthy granulosa cells seen at the three

highest doses (p,0.001 for all three doses; n = 5). For both drugs,

follicles in which both the oocyte and granulosa cells were

unhealthy were rarely seen except at the two highest doses (Fig. 3C;

p,0.001 for 5 mg ml21 cisplatin, p,0.01 for 0.2 mg ml21

doxorubicin; n= 5).

Cisplatin and Doxorubicin do not Increase the Number of
TUNEL-positive Primordial Follicles
After six days of culture, ovaries previously treated with high

doses of chemotherapy drugs contained few primordial follicles

(see above). Since a higher percentage of follicles are at the

primordial stage earlier in the culture process (see Figure S1),

apoptosis was analysed in ovaries immediately following drug

exposure at the end of Day 2. TUNEL reaction was then carried

out to identify apoptotic cells, with primordial follicles subse-

quently identified after co-staining with haematoxylin and eosin

(Fig. 4A,B). Primordial follicle number present after treatment

with 0.1 mg ml21 doxorubicin was significantly lower than in

control ovaries (p,0.05, n= 4–5), with a non-significant (p.0.05)

decrease in the number present following treatment with 1 mg
ml21 cisplatin (n = 4–5; Fig. 5A). However, drug-exposure did not

affect the number of primordial follicles positive for TUNEL

staining (mean6sem in control group= 3568, in doxorubicin

group= 43624, and in cisplatin group= 33611; n = 4–5; Fig. 5A),

which likewise was unaffected by the culture process (see Figure

S2). Similarly, there was no change to the oocyte or granulosa cell

distribution of such TUNEL-positive cells within the primordial

follicles following either drug treatment (Fig. 5B). Together, results

provide no evidence for primordial follicle loss in response to

chemotherapy drug-exposure being due to apoptosis.

Cell Death Pathway
Expression of the apoptosis marker cleaved PARP was analyzed

using Western blotting to examine how the two drugs induced

apoptosis (see Figure S3 for example of Western blots). PARP is a

DNA repair protein cleaved in mid/late stage apoptosis. Cisplatin

resulted in a significant dose-dependent increase in cleaved PARP

expression, with the highest dose increasing expression 16-fold

(p,0.001, Fig. 5C,D; n= 3). In contrast, doxorubicin had little

effect, only significantly increasing cleaved PARP expression at the

highest dose, and even then inducing only a 3-fold increase in

expression (p,0.01, n = 3). This difference in cleaved PARP

expression following exposure to the two drugs is despite the

finding that the highest doses of both drugs induced loss of almost

all follicles in both cases (Figs. 1Aii, Bii, 5C,D).

Figure 1. Cisplatin and doxorubicin both lead to loss of follicle health and a reduction in follicle numbers. (A) Cisplatin; (B)
Doxorubicin: (i) Percentage of unhealthy follicles (clear); and (ii) total number of follicles (shaded) in each ovary. Bars denote mean+sem; n= 5 for all
groups, stars denote significant differences relative to control (*p,0.05, **p,0.01, ***p,0.001).
doi:10.1371/journal.pone.0070117.g001

Ovarian Damage from Cisplatin and Doxorubicin
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Imatinib Cotreatment Protects Follicles against Cisplatin
but not Doxorubicin
Since recent evidence has suggested that the tyrosine kinase

inhibitor imatinib can alleviate cisplatin-induced ovarian damage

(17), ovaries were exposed to imatinib using the present model, to

compare its ability to protect the ovary against damage by both

cisplatin and doxorubicin. Ovaries were treated with either

cisplatin (0.5 mg ml21) or doxorubicin (0.05 mg ml21), with those

mid-range doses chosen as both induced the appearance of a

similar percentage of unhealthy follicles (around 30%), without

causing the extensive damage to the ovary found after exposure to

the highest doses. Drug exposure was limited to Day 2 of culture as

in previous experiments, with imatinib (3 mg ml21) present

throughout Days 1–3 of culture to maximize any potential

protective capacity of the drug. Imatinib treatment alone led to

a small reduction in the percentage of unhealthy follicles when

compared to control although this was not significant (n = 7;

Figs. 4C,D, 6A). Imatinib had a clear protective effect against

damage from cisplatin, reducing the percentage of unhealthy

follicles by 21% (p,0.01; n = 7; Figs. 4E,F, 6A). Imatinib tended

to lead to a reduction in the percentage of unhealthy follicles

present during exposure to doxorubicin (9% reduction), but this

was not significant (Bonferroni adjusted p= 0.6: n = 7; Figs. 4G,H,

6A). The presence of imatinib alone also lead to a higher number

of follicles present in the ovary at the end of culture (p,0.05;

n = 7): the same trend occurred in the cisplatin- and doxorubicin-

treated cultures but was not significant in either case (p.0.05 for

both: Fig. 6B).

Discussion

Chemotherapy treatment has long been associated with POF

and infertility in premenopausal patients. It is often assumed that

chemotherapy drugs directly damage oocytes in the primordial

follicle reserve and that it is this loss that leads to POF. There is,

however, little available evidence for this: instead, chemothera-

peutic drugs could primarily damage the growing population of

ovarian follicles leading to increased growth activation of

primordial follicles and thus premature depletion [15], while

initial site of damage could be either oocytes and/or somatic cells

[8]. The culture system used here allows analysis of the early stages

of follicle development in a highly physiological and controlled

environment. Our results show that cisplatin and doxorubicin lead

to a different pattern of follicle loss/damage and that they act

through different cellular mechanisms. Furthermore, imatinib

provided protection to follicles from cisplatin but not doxorubicin.

Cisplatin and doxorubicin are commonly used in cancer

treatment of premenopausal women and both have been linked

to follicle loss and POF. Data here are consistent with these

findings, showing an increase in unhealthy follicles, and a

reduction in total follicle number, following treatment with either

cisplatin or doxorubicin. Both drugs were used in doses within the

therapeutic range for patients, which are around 0.5–1 mg ml21

for cisplatin [31,32] and about 0.02–0.6 mg ml21 for doxorubicin

[33,34]. As the culture system here supports primordial follicle

formation, activation and maturation through to the primary

stage, the effect of chemotherapy drugs on very specific

populations of follicles could be assessed. Administration of

Figure 2. Cisplatin and doxorubicin affect different follicle classes. Follicles were classified as morphologically unhealthy in cisplatin and
doxorubicin treated ovaries according to follicle type. Effect of (A) Cisplatin or (B) Doxorubicin on the percentage of transitional and primary follicles
classified as morphologically unhealthy. Bars denote mean+sem; n = 5 for all groups, stars denote significant differences relative to control (*p,0.05,
**p,0.01, ***p,0.001).
doi:10.1371/journal.pone.0070117.g002

Ovarian Damage from Cisplatin and Doxorubicin
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chemotherapeutic agents in culture also allowed both dosage and

duration of exposure to be tightly controlled.

Loss of the primordial follicle pool via chemotherapy-induced

damage, whether through direct or indirect action, is an important

consideration, as this loss will directly lead to POF. Here, few

primordial follicles were left after exposure to high levels of

cisplatin or doxorubicin, but TUNEL analysis failed to find

evidence of increased apoptosis within the primordial follicles. The

simplest explanation for this is that the reduction in primordial

follicle numbers after drug exposure is due to growth initiation,

presumably as a result of the death of growing follicles and thus

loss of local growth initiation inhibiting factors, such as anti-

Müllerian hormone (AMH), [35]. These results support those of

[12], who treated mice in vivo with doxorubicin and analysed

ovaries following 24 hours of exposure; they saw little or no

TUNEL-positive cells in primordial follicles, while TUNEL-

positive cells were seen in secondary, preantral and antral follicles.

In contrast to the indirect effect of the drugs on primordial

follicles, direct damage to later stages of follicles was clear, with

cisplatin treatment mainly damaging primary follicles, while

doxorubicin treatment led to unhealthy follicles at both transi-

tional and primary stages, indicating a greater vulnerability of

follicles to doxorubicin as soon as they leave the primordial stage.

Depletion in both primary and primordial follicles has previously

been demonstrated in mouse pups injected with cisplatin [17].

Cisplatin causes cell death primarily through DNA crosslinking

and adduct formation [36]. In cisplatin-treated ovaries, the oocyte

was the primary reason for a follicle being classified as

morphologically unhealthy, suggesting that cisplatin directly

targets the germ cell. Given the importance from an evolutionary

prospective of protecting the integrity of the germ line, it may be

that oocytes are particularly vulnerable to agents causing

overwhelming DNA damage. It is well established that the oocyte

is particularly susceptible to cell death following DNA damage

caused by radiotherapy [37]. It is perhaps not that surprising,

therefore, that oocytes would also be highly susceptible to the

damaging effects of cisplatin. The preferential site of cisplatin

toxicity being the oocyte is perhaps also why follicle health was not

reduced in follicles on initiation of growth (ie transitional follicles),

but manifested at the slightly later primary stage.

Doxorubicin can cause DNA damage and inhibit topoisomerase

enzymes, both of which inhibit DNA replication and cell division.

In contrast to the effect of cisplatin, results here show that

doxorubicin primarily targeted the granulosa cells of follicles. An

in vivo study which used 4 week old female mice injected with a

single dose of doxorubicin also found an increase in granulosa cells

which stained positive for caspase 3, indicating apoptosis [12]. In

contrast to oocytes, granulosa cells are mitotically active, which

may explain their vulnerability to these types of chemotherapy

agents. Doxorubicin induces apoptosis in mature (MII) oocytes

in vitro [9,10] and a recent study has shown that oocytes collected

from antral follicles and cultured in vitro are also highly susceptible

to such damage [38]. The oocytes examined here were not

mature, but instead contained within non-growing or early-

growing follicles, which may explain why they are less sensitive to

doxorubicin in this system. This model is, though, possibly more

relevant to patients, since the oocytes required to maintain long

term fertility will also be contained within non-growing follicles. A

recent study of human primordial follicles treated in vitro with

doxorubicin showed damage to both oocytes and granulosa cells,

although that study used much higher concentrations of doxoru-

bicin than were used here, with levels in this study encompassing

those found in the serum of patients [19,33,34].

PARP is a DNA repair protein which detects the presence of

single and double strand DNA breaks. When DNA damage is

minor, PARP activates enzymatic machinery such as DNA

polymerase and ligase, allowing repair of these breaks [39].

Where DNA damage is extensive, activation of PARP can lead to

either necrotic or apoptotic cell death. PARP can be cleaved by

caspase-dependent or independent mechanisms, leading to cell

death. Although there is some evidence that PARP cleavage is not

essential to the process of apoptosis, it is generally considered one

of the hallmarks of apoptotic cell death [40]. Cisplatin caused a

dose-dependent and robust increase in cleaved PARP expression,

in marked contrast to doxorubicin which led to only a small

increase in expression and only at the highest dose used, further

evidence that cisplatin and doxorubicin are causing cell death

through quite different mechanisms.

The fact that the two cytotoxic agents cause POF in different

ways should not be surprising. The mechanism of action and

toxicities of different chemotherapeutic agents are discrete and

while it may be that some of the doxorubicin effect on the growing

follicle pool is due to a cytotoxic effect on the dividing granulosa

cells, our data suggest this is not the cause of cisplatin-induced

damage. This raises the question of how a cytotoxic agent such as

cisplatin affects non-dividing cells. It is, however, known that

neuropathy is one of the main toxicities of cisplatin therapy despite

the fact that neurones are not actively dividing. The mechanism by

which cisplatin cause neurotoxocity is not precisely understood,

Figure 3. Cisplatin and doxorubicin affect different follicular
cell types. Ovaries were treated with Cisplatin or Doxorubicin. All
unhealthy transitional and primary follicles were further categorized as
unhealthy due to: (A) poor oocyte health; (B) poor granulosa cell health;
or (C) both. Bars denote mean+sem; n= 5 for all groups, stars denote
significant differences relative to control (*p,0.05, **p,0.01,
***p,0.001).
doi:10.1371/journal.pone.0070117.g003
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Figure 4. Representative histological sections of cultured mouse ovaries. (A, B): TUNEL-analysis to determine apoptosis in primordial
follicles. (A): ovary section labelled with TUNEL reaction (green) and counterstained with DAPI (blue). Inset top- and bottom-right magnification
images are of the respective framed areas, illustrating examples of TUNEL positive oocytes (white arrowheads) and TUNEL positive granulosa cell
(white arrow) within follicles identified as at the primordial stage in (B). (B): section in (A) subsequently stained with haematoxylin and eosin. Inset
sections in (A) correspond here to degenerated oocytes (black arrowheads) and degenerated surrounding granulosa cells (black arrow) within
primordial follicles. Scale bar = 50 mm. (C–H): Photomicrographs of haemotoxylin and eosin stained sections from ovaries treated with (C) control, (D)
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but at the cellular level cisplatin affects the metabolic function of

the neuron [41] with the effect partly mediated through the

formation of platinum-DNA-protein crosslinks [42]. It has also

been demonstrated in vitro and in vivo that the formation of

platinum-DNA adducts in the dorsal root ganglion can result in

neuronal apoptosis, despite the fact that these neurones are not

actively dividing [43]. It is very possible that these mechanisms of

affecting non-dividing cells could also be responsible for the oocyte

toxicity that was seen in our study for cisplatin but not

doxorubicin. Neuroprotection during cisplatin treatment has also

been demonstrated following antioxidant treatment [44,45],

indicating that cisplatin may be causing neuronal cell death

through oxidative stress. The role of oxidative stress in the ovary

with regards to primordial and primary follicles is currently

unclear but is another potential mechanism though which cisplatin

could cause follicle loss [46].

Any damage to ovarian stromal cell health could also negatively

impact on follicle reserve. Whilst some studies have suggested that

chemotherapeutic drugs could have a negative effect on the health

of the stroma ([47,48], no consistent quantifiable increase in

stromal pyknosis was found here, with some scattered pyknotic

cells evident, but their presence was very inconsistent among

treatments (results not shown).

Recent work has suggested that the tyrosine kinase inhibitor

imatinib can reduce the toxic effect of cisplatin on the ovary

through its inhibition of c-Abl [17]. Results here provide clear

evidence of a reduction by imatinib of the adverse effect of

cisplatin on follicle health, and show that protection is specific,

with no significant protection found against doxorubicin-induced

damage. Imatinib is thought to provide ovarian protection against

cisplatin damage by inhibiting c-Abl, a tyrosine kinase which

promotes accumulation of p63, the oocyte-specific homologue of

p53: p63 in turn activates cell death following high levels of DNA

damage [17,49,50]. In contrast, doxorubicin upregulates ataxia

telangiectasia mutated (ATM) in the ovary, which is another

activator of cell death in the presence of high levels of DNA

damage [19]. In that study, the authors suggest that ATM can

cause upregulation of p63 not only through independent

3 mg ml21 imatinib, (E) 0.5 mg ml21 cisplatin, (F) cisplatin and imatinib co-treatment, (G) 0.05 mg ml21 doxorubicin and (H) doxorubicin and imatinib
co-treatment. Scale bars represent 25 mm. Examples of a healthy primordial follicle (arrow), healthy growing follicle (black arrowhead) and unhealthy
growing follicle (white arrowhead) are shown.
doi:10.1371/journal.pone.0070117.g004

Figure 5. Effect of cisplatin and doxorubicin on primordial follicles, and on expression of cleaved PARP. (A, B): Analysis of TUNEL-
positive cells within primordial follicles. (A): Total number of primordial follicles, and number of primordial follicles containing TUNEL-positive cells, in
ovaries treated with cisplatin or doxorubicin. (B): TUNEL-positive primordial follicles further categorised into percentage in which the oocyte or the
granulosa cells stained positive. Bars denote mean+sem; n = 4–5; stars denote significant differences relative to control (**P,0.01). (C, D): Cleaved
PARP expression in cisplatin and doxorubicin treated ovaries. Protein expression of cleaved PARP relative to b actin (loading control) in whole
newborn ovaries following 24 h of (C): cisplatin or (D): doxorubicin treatment. Examples of Western blots are shown in Supporting Information,
Figure S3. Bars denote mean+sem; n = 3; stars denote significant differences relative to control (*p,0.05, **p,0.01, ***p,0.001).
doi:10.1371/journal.pone.0070117.g005

Ovarian Damage from Cisplatin and Doxorubicin

PLOS ONE | www.plosone.org 8 July 2013 | Volume 8 | Issue 7 | e70117



pathways, but also via a c-Abl-dependant pathway, perhaps

explaining the trend towards a protective effect of imatinib found

here (Fig. 6C).

Imatinib treatment alone did not have a deleterious effect on the

ovary, in agreement with some recent work [24,51] although in

contrast to Kerr et al [25] who found no protective effect of

imatinib against cisplatin-induced damage, instead showing

imatinib-induced ovarian damage [25]. The difference between

these studies is possibly due to differences in drug dosages: 10 mM
imatinib, 20 mM cisplatin in Kerr et al [25]; 1 mM imatinib and

7.5 mM cisplatin in Maiani et al [24] and approximately 5 mM
imatinib and 1.67 mM cisplatin here. Interestingly, imatinib alone

increased total follicle number here, due either to inhibition of

follicle death and/or to stimulation of follicle formation: ovaries

were treated with imatinib at the start of the culture period, when

follicle formation still continues in vivo through to postnatal day 3,

with follicle number also increasing in the equivalent period in vitro

(Figure S2). Tyrosine kinase signalling has previously been

implicated to play a positive role in both, leading to increased

primordial follicle formation [52] as well as promoting the survival

of primordial germ cells [53].

In summary, data here show that cisplatin and doxorubicin

both induced follicle loss in cultured mouse ovaries. There was no

evidence of direct effects of either drug on primordial follicle

health, with follicular atresia increased only from within the

growing follicle pool, but each drug induced specific patterns of

damage across and within follicles. One consequence of the

different actions of these two drugs is that any treatments designed

to protect the ovary from chemotherapy-induced damage may

have to be tailored to the specific drug regimens used; this concept

is confirmed by the selective protection afforded by imatinib

mesylate against damage from cisplatin but not from doxorubicin.

Supporting Information

Figure S1 Follicle numbers and composition in control ovaries

cultured for up to six days.

(PDF)

Figure S2 Comparison of TUNEL-positive primordial follicles

in uncultured and cultured ovaries.

(PDF)

Figure S3 Examples of Western blots for the detection of

Cleaved PARP.

(PDF)

Table S1 Individual means, SEMs and p values for data in

Figures.

(PDF)

Figure 6. Imatinib co-treatment with cisplatin, but not doxorubicin, rescues follicle health. Control, cisplatin-treated (0.5 mg ml21) and
doxorubicin-treated (0.05 mg ml21) cultured ovaries were cultured in the presence or absence of imatinib. (A): Percentage of unhealthy follicles
(clear); (B): Total number of follicles (shaded). Bars denote mean+sem; n = 7 for all groups, stars denote significant differences relative to control
(**p,0.01). (C): Pathway by which imatinib could protect the ovary against the damaging effect of cisplatin more effectively than it could against the
damaging effect of doxorubicin.
doi:10.1371/journal.pone.0070117.g006
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