18 research outputs found

    The Extended X-ray Halo of the Crab-like SNR G21.5-0.9

    Get PDF
    Recent XMM-Newton observations reveal an extended (150") low-surface brightness X-ray halo in the supernova remnant G21.5-0.9. The near circular symmetry, the lack of any limb brightening and the non-thermal spectral form, all favour an interpretation of this outer halo as an extension of the central synchrotron nebula rather than as a shell formed by the supernova blast wave and ejecta. The X-ray spectrum of the nebula exhibits a marked spectral softening with radius, with the power-law spectral index varying from Gamma = 1.63 +/- 0.04 in the core to Gamma = 2.45 +/- 0.06 at the edge of the halo. Similar spectral trends are seen in other Crab-like remnants and reflect the impact of the synchrotron radiation losses on very high energy electrons as they diffuse out from the inner nebula. A preliminary timing analysis provides no evidence for any pulsed X-ray emission from the core of G21.5-0.9.Comment: 6 pages. Accepted for publication in the Astronomy and Astrophysics Special Issue on 1st science with XMM-Newto

    LOFAR 150-MHz observations of SS 433 and W50

    Get PDF
    We present Low-Frequency Array (LOFAR) high-band data over the frequency range 115-189 MHz for the X-ray binary SS 433, obtained in an observing campaign from 2013 February to 2014 May. Our results include a deep, wide-field map, allowing a detailed view of the surrounding supernova remnant W50 at low radio frequencies, as well as a light curve for SS 433 determined from shorter monitoring runs. The complex morphology of W50 is in excellent agreement with previously published higher frequency maps; we find additional evidence for a spectral turnover in the eastern wing, potentially due to foreground free-free absorption. Furthermore, SS 433 is tentatively variable at 150 MHz, with both a debiased modulation index of 11 per cent and a Χ 2 probability of a flat light curve of 8.2 × 10 -3 . By comparing the LOFAR flux densities with contemporaneous observations carried out at 4800 MHz with the RATAN-600 telescope, we suggest that an observed ~0.5-1 Jy rise in the 150-MHz flux density may correspond to sustained flaring activity over a period of approximately 6 months at 4800 MHz. However, the increase is too large to be explained with a standard synchrotron bubble model. We also detect a wealth of structure along the nearby Galactic plane, including the most complete detection to date of the radio shell of the candidate supernova remnant G38.7-1.4. This further demonstrates the potential of supernova remnant studies with the current generation of low-frequency radio telescopes

    X-ray properties of galactic supernova remnants

    No full text

    Die Zukunft der Magnetsensoren (The Future of Magnetic Sensors)

    No full text
    corecore