751 research outputs found

    Electron backscattering in a cavity: ballistic and coherent effects

    Get PDF
    Numerous experimental and theoretical studies have focused on low-dimensional systems locally perturbed by the biased tip of a scanning force microscope. In all cases either open or closed weakly gate-tunable nanostructures have been investigated, such as quantum point contacts, open or closed quantum dots, etc. We study the behaviour of the conductance of a quantum point contact with a gradually forming adjacent cavity in series under the influence of a scanning gate. Here, an initially open quantum point contact system gradually turns into a closed cavity system. We observe branches and interference fringes known from quantum point contacts coexisting with irregular conductance fluctuations. Unlike the branches, the fluctuations cover the entire area of the cavity. In contrast to previous studies, we observe and investigate branches under the influence of the confining stadium potential, which is gradually built up. We find that the branches exist only in the area surrounded by cavity top gates. As the stadium shrinks, regular fringes originate from tip-induced constrictions leading to quantized conduction. In addition, we observe arc-like areas reminiscent of classical electron trajectories in a chaotic cavity. We also argue that electrons emanating from the quantum point contact spread out like a fan leaving branch-like regions of enhanced backscattering.Comment: 7 pages, 4 figure

    Dynamic photoconductive gain effect in shallow-etched AlGaAs/GaAs quantum wires

    Full text link
    We report on a dynamic photoconductive gain effect in quantum wires which are lithographically fabricated in an AlGaAs/GaAs quantum well via a shallow-etch technique. The effect allows resolving the one-dimensional subbands of the quantum wires as maxima in the photoresponse across the quantum wires. We interpret the results by optically induced holes in the valence band of the quantum well which shift the chemical potential of the quantum wire. The non-linear current-voltage characteristics of the quantum wires also allow detecting the photoresponse effect of excess charge carriers in the conduction band of the quantum well. The dynamics of the photoconductive gain are limited by the recombination time of both electrons and holes

    Diffusion and viscosity in a supercooled polydisperse system

    Get PDF
    We have carried out extensive molecular dynamics simulations of a supercooled polydisperse Lennard-Jones liquid with large variations in temperature at a fixed pressure. The particles in the system are considered to be polydisperse both in size and mass. The temperature dependence of the dynamical properties such as the viscosity (η\eta) and the self-diffusion coefficients (DiD_i) of different size particles is studied. Both viscosity and diffusion coefficients show super-Arrhenius temperature dependence and fit well to the well-known Vogel-Fulcher-Tammann (VFT) equation. Within the temperature range investigated, the value of the Angell's fragility parameter (D 1.4\approx 1.4) classifies the present system into a strongly fragile liquid. The critical temperature for diffusion (ToDiT_o^{D_i}) increases with the size of the particles. The critical temperature for viscosity (ToηT_o^{\eta}) is larger than that for the diffusion and a sizeable deviations appear for the smaller size particles implying a decoupling of translational diffusion from viscosity in deeply supercooled liquid. Indeed, the diffusion shows markedly non-Stokesian behavior at low temperatures where a highly nonlinear dependence on size is observed. An inspection of the trajectories of the particles shows that at low temperatures the motions of both the smallest and largest size particles are discontinuous (jump-type). However, the crossover from continuous Brownian to large length hopping motion takes place at shorter time scales for the smaller size particles.Comment: Revtex4, 7 pages, 8 figure

    Cohomology and torsion cycles over the maximal cyclotomic extension

    Get PDF
    A classical theorem by K. Ribet asserts that an abelian variety defined over the maximal cyclotomic extension K of a number field has only finitely many torsion points. We show that this statement can be viewed as a particular case of a much more general one, namely that the absolute Galois group of K acts with finitely many fixed points on the ?tale cohomology with Q/Z-coefficients of a smooth proper K-variety defined over K. We also present a conjectural generalization of Ribet?s theorem to torsion cycles of higher codimension. We offer supporting evidence for the conjecture in codimension 2, as well as an analogue in positive characteristic

    Random Field and Random Anisotropy Effects in Defect-Free Three-Dimensional XY Models

    Full text link
    Monte Carlo simulations have been used to study a vortex-free XY ferromagnet with a random field or a random anisotropy on simple cubic lattices. In the random field case, which can be related to a charge-density wave pinned by random point defects, it is found that long-range order is destroyed even for weak randomness. In the random anisotropy case, which can be related to a randomly pinned spin-density wave, the long-range order is not destroyed and the correlation length is finite. In both cases there are many local minima of the free energy separated by high entropy barriers. Our results for the random field case are consistent with the existence of a Bragg glass phase of the type discussed by Emig, Bogner and Nattermann.Comment: 10 pages, including 2 figures, extensively revise

    First principles study of strain/electronic interplay in ZnO; Stress and temperature dependence of the piezoelectric constants

    Get PDF
    We present a first-principles study of the relationship between stress, temperature and electronic properties in piezoelectric ZnO. Our method is a plane wave pseudopotential implementation of density functional theory and density functional linear response within the local density approximation. We observe marked changes in the piezoelectric and dielectric constants when the material is distorted. This stress dependence is the result of strong, bond length dependent, hybridization between the O 2p2p and Zn 3d3d electrons. Our results indicate that fine tuning of the piezoelectric properties for specific device applications can be achieved by control of the ZnO lattice constant, for example by epitaxial growth on an appropriate substrate.Comment: accepted for publication in Phys. Rev.

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
    corecore