479 research outputs found

    An Argo mixed layer climatology and database

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 44 (2017): 5618–5626, doi:10.1002/2017GL073426.A global climatology and database of mixed layer properties are computed from nearly 1,250,000 Argo profiles. The climatology is calculated with both a hybrid algorithm for detecting the mixed layer depth (MLD) and a standard threshold method. The climatology provides accurate information about the depth, properties, extent, and seasonal patterns of global mixed layers. The individual profile results in the database can be used to construct time series of mixed layer properties in specific regions of interest. The climatology and database are available online at http://mixedlayer.ucsd.edu. The MLDs calculated by the hybrid algorithm are shallower and generally more accurate than those of the threshold method, particularly in regions of deep winter mixed layers; the new climatology differs the most from existing mixed layer climatologies in these regions. Examples are presented from the Labrador and Irminger Seas, the Southern Ocean, and the North Atlantic Ocean near the Gulf Stream. In these regions the threshold method tends to overestimate winter MLDs by approximately 10% compared to the algorithm.National Science Foundation (NSF) Grant Numbers: OCE-0327544, OCE-0960928, OCE-1459474; NOAA Grant Number: NA10OAR43101392017-12-1

    Fresh equatorial jets

    Get PDF
    A vertically sheared eastward jet in the Equatorial pacific in late 1991 and early 1992 carried relatively fresh water from the Western Pacific overriding the saltier surface layer of the central region. Salinity anomalies of about -1.0 psu were observed over a period of several months in a surface layer 50 m thick near the equator. Below this fresh layer there was a steep halocline having very little temperature stratification, so that the density changes were dominated by salinity. In December 1991, eastward surface velocities in the fresh jet at 170°W were 100 cm s-1 with a shear of about 40 cm s-1 in the top 100 m; the core of the jet was about 200 km in width, centered at 1.5°S. The jet decayed and vanished over the next few months, though the surface halocline remained. (D'après résumé d'auteur

    Spatial and Temporal Scales of Sverdrup Balance

    Get PDF
    Sverdrup balance underlies much of the theory of ocean circulation and provides a potential tool for describing the interior ocean transport from only the wind stress. Using both a model state estimate and an eddy-permitting coupled climate model, this study assesses to what extent and over what spatial and temporal scales Sverdrup balance describes the meridional transport. The authors find that Sverdrup balance holds to first order in the interior subtropical ocean when considered at spatial scales greater than approximately 5°. Outside the subtropics, in western boundary currents and at short spatial scales, significant departures occur due to failures in both the assumptions that there is a level of no motion at some depth and that the vorticity equation is linear. Despite the ocean transport adjustment occurring on time scales consistent with the basin-crossing times for Rossby waves, as predicted by theory, Sverdrup balance gives a useful measure of the subtropical circulation after only a few years. This is because the interannual transport variability is small compared to the mean transports. The vorticity input to the deep ocean by the interaction between deep currents and topography is found to be very large in both models. These deep transports, however, are separated from upper-layer transports that are in Sverdrup balance when considered over large scales

    Meridional transport of dissolved inorganic carbon in the South Atlantic Ocean

    Get PDF
    The meridional oceanic transports of dissolved inorganic carbon and oxygen were calculated using six transoceanic sections occupied in the South Atlantic between 11 degrees S and 30 degrees S. The total dissolved inorganic carbon (TCO2) data were interpolated onto conductivity-temperature-depth data to obtain a high-resolution data set, and Ekman, depth-dependent and depth-independent components of the transport were estimated. Uncertainties in the depth-independent velocity distribution were reduced using an inverse model. The inorganic carbon transport between 11 degrees S and 30 degrees S was southward, decreased slightly toward the south, and was -2150 +/- 200 kmol s(-1) (-0.81 +/- 0.08 Gt C yr(-1)) at 20 degrees S. This estimate includes the contribution of net mass transport required to balance the salt transport through Bering Strait. Anthropogenic CO2 concentrations were estimated for the sections. The meridional transport of anthropogenic CO2 was northward, increased toward the north, and was 430 kmol s(-1) (0.16 Gt C yr(-1)) at 20 degrees S. The calculations imply net southward inorganic carbon transport of 2580 kmol s(-1) (1 Gt C yr(-1)) during preindustrial times. The slight contemporary convergence of inorganic carbon between 10 degrees S and 30 degrees S is balanced by storage of anthropogenic CO2 and a sea-to-air flux implying little local divergence of the organic carbon transport. During the preindustrial era, there was significant regional convergence of both inorganic carbon and oxygen, consistent with a sea-to-air gas flux driven by warming. The northward transport of anthropogenic CO2 carried by the meridional overturning circulation represents an important source for anthropogenic CO2 currently being stored within the North Atlantic Ocean

    Volume, heat, and freshwater transports of the global ocean circulation 1993-2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data.

    No full text
    An analysis of ocean volume, heat and freshwater transports from a fully con-strained general circulation model is described. Output from a data synthesis, or state estimation, method is used by which the model was forced to a large-scale, time varying global ocean data set over six years. Time-mean fluxes estimated from this fully time-dependent circulation have converged with independent time-independent estimates from box inversions over most parts of the world ocean but especially in the southern hemisphere. However, heat transport estimates differ substantially in the North Atlantic where our estimates result in only 1/2 previous heat transports. The estimated mean circulation around Australia involves a net volume flux of 14 Sv through the Indonesian Through flow and the Mozambique Channel. In addition we show that this flow regime exist on all time scales above one month rendering the variability in the South Pacific strongly coupled to the Indian Ocean. Moreover, the dynamically consistent variations in the model show temporal variability of oceanic heat fluxes, heat storage and atmospheric exchanges that are complex and with a strong dependence upon location, depth, and time-scale. Results presented demonstrate the great potential of an ocean /state estimation system to provide a dynamical description of the time-dependent observed heat transport and heat content changes and their relation to air-sea interactions

    Age before stage: insulin resistance rises before the onset of puberty: a 9-year longitudinal study (EarlyBird 26).

    Get PDF
    OBJECTIVE: Insulin resistance (IR) is associated with diabetes. IR is higher during puberty in both sexes, with some studies showing the increase to be independent of changes in adiposity. Few longitudinal studies have reported on children, and it remains unclear when the rise in IR that is often attributed to puberty really begins. We sought to establish from longitudinal data its relationship to pubertal onset, and interactions with age, sex, adiposity, and IGF-1. RESEARCH DESIGN AND METHODS: The EarlyBird Diabetes study is a longitudinal prospective cohort study of healthy children aged 5-14 years. Homeostasis model assessment (HOMA-IR), skinfolds (SSF), adiposity (percent fat, measured by dual-energy X-ray absorptiometry), serum leptin, and IGF-1 were measured annually in 235 children (134 boys). Pubertal onset was adduced from Tanner stage (TS) and from the age at which luteinizing hormone (LH) first became serially detectable (≥0.2 international units/L). RESULTS: IR rose progressively from age 7 years, 3-4 years before TS2 was reached or LH became detectable. Rising adiposity and IGF-1 together explained 34% of the variance in IR in boys and 35% in girls (both P < 0.001) over the 3 years preceding pubertal onset. The contribution of IGF-1 to IR was greater in boys, despite their comparatively lower IGF-1 levels. CONCLUSIONS: IR starts to rise in mid-childhood, some years before puberty. Its emergence relates more to the age of the child than to pubertal onset. More than 60% of the variation in IR prior to puberty was unexplained. The demography of childhood diabetes is changing, and prepubertal IR may be important

    Inducing Incentive Sensitization of Exercise Reinforcement Among Adults Who Do Not Regularly Exercise—A Randomized Controlled Trial

    Get PDF
    Background Increasing exercise reinforcement, or decreasing sedentary reinforcement, may reduce sedentary activity and promote habitual exercise. Repeated exposures to a reinforcer may increase its reinforcing value (i.e., incentive sensitization). It is not yet known whether incentive sensitization occurs for exercise or factors associated with incentive sensitization for exercise reinforcement. The purpose was to determine whether exercise exposures increase exercise reinforcement relative to a sedentary alternative and whether this sensitization of exercise reinforcement would alter physical or sedentary behavior. This work also determined whether exercise dose, intensity, and preference and tolerance for exercise intensity were associated with incentive sensitization of exercise. Methods 104 sedentary men and women were randomized to exercise training groups with 89 completing the study. Groups included exercise exposures of 150 (n = 35) or 300 kcal/session (n = 34), 3 sessions/week for 6 weeks, or a non-exercise control group (n = 35). Assessments for exercise and sedentary behavior reinforcement (primary dependent variables) and activity and tolerance for exercise intensity were performed at baseline (week 0), post training (week 6), and post washout (week 10). Results The control group reduced (P = 0.022) relative reinforcing value of exercise, such that the 150 kcal group had a greater relative reinforcing value of exercise after the exercise treatment 150 kcal: 0.69 ± 0.07 to 0.74 ± 0.07; 300 kcal: 0.72 ± 0.07 to 0.63 ± 0.08, control: 0.72 ± 0.07 to 0.57 ± 0.08 mean ± SE. Increases in tolerance for exercise intensity discomfort were associated with increases in relative reinforcing value of exercise. Sedentary behavior reinforcement decreased in both exercise groups (150 kcal: 5.4 ± 4.3 to 1.8 ± 1.3; 300 kcal: 5.4 ± 4.3 to 3.1 ± 2.4, P \u3c 0.05), but remained unchanged in the control group (5.1 ± 4.0 to 6.1 ± 4.9, P \u3e 0.05). Sedentary activity decreased baseline to post-training in the 300 kcal group (546.5 ± 10.7 to 503.8 ± 11.8 minutes, P \u3c 0.01). Conclusion Small amounts of regular exercise may reduce the reinforcing value sedentary behavior. The process of incentive sensitization of exercise may include reducing the reinforcing value of competing sedentary activities. Developing tolerance to exercise discomfort of exercise may be critical to increasing exercise reinforcement
    corecore