24 research outputs found

    Impaired neural processing of dynamic faces in left-onset Parkinson's disease

    Get PDF
    Parkinson's disease (PD) affects patients beyond the motor domain. According to previous evidence, one mechanism that may be impaired in the disease is face processing. However, few studies have investigated this process at the neural level in PD. Moreover, research using dynamic facial displays rather than static pictures is scarce, but highly warranted due to the higher ecological validity of dynamic stimuli. In the present study we aimed to investigate how PD patients process emotional and non-emotional dynamic face stimuli at the neural level using event-related potentials. Since the literature has revealed a predominantly right-lateralized network for dynamic face processing, we divided the group into patients with left (LPD) and right (RPD) motor symptom onset (right versus left cerebral hemisphere predominantly affected, respectively). Participants watched short video clips of happy, angry, and neutral expressions and engaged in a shallow gender decision task in order to avoid confounds of task difficulty in the data. In line with our expectations, the LPD group showed significant face processing deficits compared to controls. While there were no group differences in early, sensory-driven processing (fronto-central N1 and posterior P1), the vertex positive potential, which is considered the fronto-central counterpart of the face-specific posterior N170 component, had a reduced amplitude and delayed latency in the LPD group. This may indicate disturbances of structural face processing in LPD. Furthermore, the effect was independent of the emotional content of the videos. In contrast, static facial identity recognition performance in LPD was not significantly different from controls, and comprehensive testing of cognitive functions did not reveal any deficits in this group. We therefore conclude that PD, and more specifically the predominant right-hemispheric affection in left-onset PD, is associated with impaired processing of dynamic facial expressions, which could be one of the mechanisms behind the often reported problems of PD patients in their social lives

    Aminobisphosphonates reactivate the latent reservoir in people living with HIV-1

    Get PDF
    Antiretroviral therapy (ART) is not curative due to the existence of cellular reservoirs of latent HIV-1 that persist during therapy. Current research efforts to cure HIV-1 infection include “shock and kill” strategies to disrupt latency using small molecules or latency-reversing agents (LRAs) to induce expression of HIV-1 enabling cytotoxic immune cells to eliminate infected cells. The modest success of current LRAs urges the field to identify novel drugs with increased clinical efficacy. Aminobisphosphonates (N-BPs) that include pamidronate, zoledronate, or alendronate, are the first-line treatment of bone-related diseases including osteoporosis and bone malignancies. Here, we show the use of N-BPs as a novel class of LRA: we found in ex vivo assays using primary cells from ART-suppressed people living with HIV-1 that N-BPs induce HIV-1 from latency to levels that are comparable to the T cell activator phytohemagglutinin (PHA). RNA sequencing and mechanistic data suggested that reactivation may occur through activation of the activator protein 1 signaling pathway. Stored samples from a prior clinical trial aimed at analyzing the effect of alendronate on bone mineral density, provided further evidence of alendronate-mediated latency reversal and activation of immune effector cells. Decay of the reservoir measured by IPDA was however not detected. Our results demonstrate the novel use of N-BPs to reverse HIV-1 latency while inducing immune effector functions. This preliminary evidence merits further investigation in a controlled clinical setting possibly in combination with therapeutic vaccination

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Registro Español de Trasplante Cardiaco. XXXI Informe Oficial de la Asociación de Insuficiencia Cardiaca de la Sociedad Española de Cardiología

    Get PDF
    Introducción y objetivos Se presentan las características clínicas y los resultados de los trasplantes cardiacos realizados en España con la actualización correspondiente a 2019. Métodos Se describen las características clínicas y los resultados de los trasplantes cardiacos realizados en 2019, así como las tendencias de estos en el periodo 2010-2018. Resultados En 2019 se realizaron 300 trasplantes (8.794 desde 1984; 2.745 entre 2010 y 2019). Respecto a años previos, los cambios más llamativos son el descenso hasta el 38% de los trasplantes realizados en código urgente, y la consolidación en el cambio de asistencia circulatoria pretrasplante, con la práctica desaparición del balón de contrapulsación (0, 7%), la estabilización del uso del oxigenador extracorpóreo de membrana (9, 6%) y el aumento de los dispositivos de asistencia ventricular (29%). La supervivencia en el trienio 2016-2018 es similar a la del trienio 2013-2015 (p = 0, 34), y ambas mejores que la del trienio 2010-2012 (p = 0, 002 y p = 0, 01 respectivamente). Conclusiones Se mantienen estables tanto la actividad del trasplante cardiaco en España como los resultados en supervivencia en los últimos 2 trienios. Hay una tendencia a realizar menos trasplantes urgentes, la mayoría con dispositivos de asistencia ventricular. Introduction and objectives: The present report describes the clinical characteristics and outcomes of heart transplants in Spain and updates the data to 2019. Methods: We describe the clinical characteristics and outcomes of heart transplants performed in Spain in 2019, as well as trends in this procedure from 2010 to 2018. Results: In 2019, 300 transplants were performed (8794 since 1984; 2745 between 2010 and 2019). Compared with previous years, the most notable findings were the decreasing rate of urgent transplants (38%), and the consolidation of the type of circulatory support prior to transplant, with an almost complete disappearance of counterpulsation balloon (0.7%), stabilization in the use of extracorporeal membrane oxygenation (9.6%), and an increase in the use of ventricular assist devices (29.0%). Survival from 2016 to 2018 was similar to that from 2013 to 2015 (P = .34). Survival in both these periods was better than that from 2010 to 2012 (P = .002 and P = .01, respectively). Conclusions: Heart transplant activity has remained stable during the last few years, as have outcomes (in terms of survival). There has been a trend to a lower rate of urgent transplants and to a higher use of ventricular assist devices prior to transplant

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Combined bioelectrochemical-electrical model of a microbial fuel cell

    No full text
    Several recent studies demonstrated significant charge storage in electrochemical biofilms. Aiming to evaluate the impact of charge storage on microbial fuel cell (MFC) performance, this work presents a combined bioelectrochemical-electrical (CBE) model of an MFC. In addition to charge storage, the CBE model is able to describe fast (ms) and slow (days) nonlinear dynamics of MFCs by merging mass and electron balances with equations describing an equivalent electrical circuit. Parameter estimation was performed using results of MFC operation with intermittent (pulse-width modulated) connection of the external resistance. The model was used to compare different methods of selecting external resistance during MFC operation under varying operating conditions. Owing to the relatively simple structure and fast numerical solution of the model, its application for both reactor design and real-time model-based process control applications are envisioned.Peer reviewed: YesNRC publication: Ye

    Modeling, optimization and control of bioelectrochemical systems

    No full text
    Bioelectrochemical systems (BESs) such as Microbial Fuel Cells (MFCs) and Microbial Electrolysis Cells (MECs) are capable of producing energy from renewable organic materials. Over the last decade, extensive experimental work has been dedicated to exploring BES applications for combined energy production and wastewater treatment. These efforts have led to significant advancement in areas of BES design, electrode materials selection, as well as a deeper understanding of the associated microbiology, which helped to bring BES-based technologies within commercial reach. Further progress towards BES commercialization necessitates the development of model-based optimization and process control approaches. This work reviews existing MFC and MEC dynamic models as well as the emerging approaches for optimization and control.Peer reviewed: YesNRC publication: Ye

    Design of Optimization-based Controllers Applied to an Ethanol Steam Reformer for Hydrogen Production

    Get PDF
    This paper focuses on the control of a low-temperature ethanol steam reformer for in-situ hydrogen production. For this purpose, three optimization-based control configurations are proposed, namely, a linear model-based predictive controller, a linear quadratic regulator with output error integral action and a cascade control combining the two previous configurations. In all cases, control objectives aim at obtaining the desired flow of hydrogen while keeping the carbon monoxide at its nominal working point under input and output operational constraints. Output tracking and robustness of each configuration are compared using two key performance indicators that evaluate the output errors and the smoothness of the control signals. Simulation results allow to compare the characteristics of each control configuration when applied to the non-linear model of the ethanol steam reformer
    corecore