585 research outputs found
A Data Fusion Perspective on Human Motion Analysis Including Multiple Camera Applications
Proceedings of: 5th International Work-Conference on the Interplay Between Natural and Artificial Computation, (IWINAC 2013). Mallorca, Spain, June 10-14.Human motion analysis methods have received increasing attention during the last two decades. In parallel, data fusion technologies have emerged as a powerful tool for the estimation of properties of objects in the real world. This papers presents a view of human motion analysis from the viewpoint of data fusion. JDL process model and Dasarathy's input-output hierarchy are employed to categorize the works in the area. A survey of the literature in human motion analysis from multiple cameras is included. Future research directions in the area are identified after this review.Publicad
The neutrino signal at HALO: learning about the primary supernova neutrino fluxes and neutrino properties
Core-collapse supernova neutrinos undergo a variety of phenomena when they
travel from the high neutrino density region and large matter densities to the
Earth. We perform analytical calculations of the supernova neutrino fluxes
including collective effects due to the neutrino-neutrino interactions, the
Mikheev-Smirnov-Wolfenstein (MSW) effect due to the neutrino interactions with
the background matter and decoherence of the wave packets as they propagate in
space. We predict the numbers of one- and two-neutron charged and
neutral-current electron-neutrino scattering on lead events. We show that, due
to the energy thresholds, the ratios of one- to two-neutron events are
sensitive to the pinching parameters of neutrino fluxes at the neutrinosphere,
almost independently of the presently unknown neutrino properties. Besides,
such events have an interesting sensitivity to the spectral split features that
depend upon the presence/absence of energy equipartition among neutrino
flavors. Our calculations show that a lead-based observatory like the Helium
And Lead Observatory (HALO) has the potential to pin down important
characteristics of the neutrino fluxes at the neutrinosphere, and provide us
with information on the neutrino transport in the supernova core.Comment: 30 pages, 12 figures, 6 tables, minor correction
Technology-assisted stroke rehabilitation in Mexico: a pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym
Background Stroke rehabilitation in low- and middle-income countries, such as Mexico, is often hampered by lack of clinical resources and funding. To provide a cost-effective solution for comprehensive post-stroke rehabilitation that can alleviate the need for one-on-one physical or occupational therapy, in lower and upper extremities, we proposed and implemented a technology-assisted rehabilitation gymnasium in Chihuahua, Mexico. The Gymnasium for Robotic Rehabilitation (Robot Gym) consisted of low- and high-tech systems for upper and lower limb rehabilitation. Our hypothesis is that the Robot Gym can provide a cost- and labor-efficient alternative for post-stroke rehabilitation, while being more or as effective as traditional physical and occupational therapy approaches. Methods A typical group of stroke patients was randomly allocated to an intervention (n = 10) or a control group (n = 10). The intervention group received rehabilitation using the devices in the Robot Gym, whereas the control group (n = 10) received time-matched standard care. All of the study subjects were subjected to 24 two-hour therapy sessions over a period of 6 to 8 weeks. Several clinical assessments tests for upper and lower extremities were used to evaluate motor function pre- and post-intervention. A cost analysis was done to compare the cost effectiveness for both therapies. Results No significant differences were observed when comparing the results of the pre-intervention Mini-mental, Brunnstrom Test, and Geriatric Depression Scale Test, showing that both groups were functionally similar prior to the intervention. Although, both training groups were functionally equivalent, they had a significant age difference. The results of all of the upper extremity tests showed an improvement in function in both groups with no statistically significant differences between the groups. The Fugl-Meyer and the 10 Meters Walk lower extremity tests showed greater improvement in the intervention group compared to the control group. On the Time Up and Go Test, no statistically significant differences were observed pre- and post-intervention when comparing the control and the intervention groups. For the 6 Minute Walk Test, both groups presented a statistically significant difference pre- and post-intervention, showing progress in their performance. The robot gym therapy was more cost-effective than the traditional one-to-one therapy used during this study in that it enabled therapist to train up to 1.5 to 6 times more patients for the approximately same cost in the long term. Conclusions The results of this study showed that the patients that received therapy using the Robot Gym had enhanced functionality in the upper extremity tests similar to patients in the control group. In the lower extremity tests, the intervention patients showed more improvement than those subjected to traditional therapy. These results support that the Robot Gym can be as effective as traditional therapy for stroke patients, presenting a more cost- and labor-efficient option for countries with scarce clinical resources and funding. Trial registration ISRCTN98578807
Exploring the characteristics and most bothersome symptoms in MECP2 duplication syndrome to pave the path toward developing parent-oriented outcome measures
BACKGROUND: MECP2 Duplication Syndrome (MDS), resulting from the duplication of Xq28 region, including MECP2, is a rare disorder with a nascent understanding in clinical features and severity. Studies using antisense oligonucleotides revealed a broad phenotypic rescue in transgenic mice. With human clinical trials on the horizon, there is a need to develop clinical outcome measures for MDS. METHODS: We surveyed caregivers of MDS individuals to explore the frequency and severity of MDS clinical features, and identify the most meaningful symptoms/domains that need to be included in the outcome measure scales. RESULTS: A total of 101 responses were eligible for the survey. The top six most meaningful symptoms to caregivers in descending order included epilepsy, gross motor, fine motor, communication, infection, and constipation problems. Epilepsy was present in 58.4% of the subjects and 75% were drug‐resistant, Furthermore, ~12% required intensive care unit (ICU) admission. Infections were present in 55% of the subjects, and one‐fourth of them required ICU admission. Constipation was present in ~85% of the subjects and one‐third required enemas/suppositories. CONCLUSION: Our study is one of the largest cohorts conducted on MDS individuals characterizing the frequency and severity of MDS symptoms. Additionally, these study results will contribute to establishing a foundation to develop parent‐reported outcomes in MDS
Tool flank wear prediction using high-frequency machine data from industrial edge device
Tool flank wear monitoring can minimize machining downtime costs while
increasing productivity and product quality. In some industrial applications,
only a limited level of tool wear is allowed to attain necessary tolerances. It
may become challenging to monitor a limited level of tool wear in the data
collected from the machine due to the other components, such as the flexible
vibrations of the machine, dominating the measurement signals. In this study, a
tool wear monitoring technique to predict limited levels of tool wear from the
spindle motor current and dynamometer measurements is presented. High-frequency
spindle motor current data is collected with an industrial edge device while
the cutting forces and torque are measured with a rotary dynamometer in
drilling tests for a selected number of holes. Feature engineering is conducted
to identify the statistical features of the measurement signals that are most
sensitive to small changes in tool wear. A neural network based on the long
short-term memory (LSTM) architecture is developed to predict tool flank wear
from the measured spindle motor current and dynamometer signals. It is
demonstrated that the proposed technique predicts tool flank wear with good
accuracy and high computational efficiency. The proposed technique can easily
be implemented in an industrial edge device as a real-time predictive
maintenance application to minimize the costs due to manufacturing downtime and
tool underuse or overuse.Comment: The first four authors have equal contributio
Opportunities and challenges in the use of coal fly ash for soil improvements – a review
Coal fly ash (CFA), a by-product of coal combustion has been regarded as a problematic solid waste, mainly due to its potentially toxic trace elements, PTEs (e.g. Cd, Cr, Ni, Pb) and organic compounds (e.g. PCBs, PAHs) content. However, CFA is a useful source of essential plant nutrients (e.g. Ca, Mg, K, P, S, B, Fe, Cu and Zn). Uncontrolled land disposal of CFA is likely to cause undesirable changes in soil conditions, including contamination with PTEs, PAHs and PCBs. Prudent CFA land application offers considerable opportunities, particularly for nutrient supplementation, pH correction and ameliorating soil physical conditions (soil compaction, water retention and drainage). Since CFA contains little or no N and organic carbon, and CFA-borne P is not readily plant available, a mixture of CFA and manure or sewage sludge (SS) is better suited than CFA alone. Additionally, land application of such a mixture can mitigate the mobility of SS-borne PTEs, which is known to increase following cessation of SS application. Research analysis further shows that application of alkaline CFA with or without other amendments can help remediate at least marginally metal contaminated soils by immobilisation of mobile metal forms. CFA land application with SS or other source of organic carbon, N and P can help effectively reclaim/restore mining-affected lands. Given the variability in the nature and composition of CFA (pH, macro- and micro-nutrients) and that of soil (pH, texture and fertility), the choice of CFA (acidic or alkaline and its application rate) needs to consider the properties and problems of the soil. CFA can also be used as a low cost sorbent for the removal of organic and inorganic contaminants from wastewater streams; the disposal of spent CFA however can pose further challenges. Problems in CFA use as a soil amendment occur when it results in undesirable change in soil pH, imbalance in nutrient supply, boron toxicity in plants, excess supply of sulphate and PTEs. These problems, however, are usually associated with excess or inappropriate CFA applications. The levels of PAHs and PCBs in CFA are generally low; their effects on soil biota, uptake by plants and soil persistence, however, need to be assessed. In spite of this, co-application of CFA with manure or SS to land enhances its effectiveness in soil improvements
Stylistic document retrieval for Turkish
In information retrieval (IR) systems, there are a query and a collection of documents compared with this query and ranked according to a particular similarity measure. Since texts with the same content can be written by different authors, the writing styles of the documents change as well accordingly. This observation brings the idea of investigating text by means of style. In this paper, we analyze text documents in terms of stylistic features of the written text and measure effectiveness of these features in an IR system. Our main focus is on Turkish text documents. Although there are many studies about broadening IR systems with style based enhancement, there is no similar application for Turkish which performs retrieval depending purely on style. © 2009 IEEE
Functional biology of the Steel syndrome founder allele and evidence for clan genomics derivation of COL27A1 pathogenic alleles worldwide
© 2020, The Author(s). Previously we reported the identification of a homozygous COL27A1 (c.2089G\u3eC; p.Gly697Arg) missense variant and proposed it as a founder allele in Puerto Rico segregating with Steel syndrome (STLS, MIM #615155); a rare osteochondrodysplasia characterized by short stature, congenital bilateral hip dysplasia, carpal coalitions, and scoliosis. We now report segregation of this variant in five probands from the initial clinical report defining the syndrome and an additional family of Puerto Rican descent with multiple affected adult individuals. We modeled the orthologous variant in murine Col27a1 and found it recapitulates some of the major Steel syndrome associated skeletal features including reduced body length, scoliosis, and a more rounded skull shape. Characterization of the in vivo murine model shows abnormal collagen deposition in the extracellular matrix and disorganization of the proliferative zone of the growth plate. We report additional COL27A1 pathogenic variant alleles identified in unrelated consanguineous Turkish kindreds suggesting Clan Genomics and identity-by-descent homozygosity contributing to disease in this population. The hypothesis that carrier states for this autosomal recessive osteochondrodysplasia may contribute to common complex traits is further explored in a large clinical population cohort. Our findings auNorthwell Healthnt our understanding of COL27A1 biology and its role in skeletal development; and expand the functional allelic architecture in this gene underlying both rare and common disease phenotypes
Analytical Benchmark Problems for Multifidelity Optimization Methods
The paper presents a collection of analytical benchmark problems specifically
selected to provide a set of stress tests for the assessment of multifidelity
optimization methods. In addition, the paper discusses a comprehensive ensemble
of metrics and criteria recommended for the rigorous and meaningful assessment
of the performance of multifidelity strategies and algorithms
- …
