29 research outputs found

    DC Network Indoor and Outdoor LED Lighting

    Get PDF
    LED lighting products have become a significant revolution in this technological sector. These components are, by nature, digital emitters created with semiconductor crystals that are powered with very low voltage and direct current (DC). Under these conditions, they have become one of the most relevant actors in the present tendency that is recovering the DC as the channel to transport and distribute energy and is reinforcing the photovoltaic (PV) panels as a relevant sustainable energy source that allows to improve the efficiencies of all types of lighting installations with the local self-generated energy. An analysis of the working principles of this component and the mechanism implemented for their control as lighting equipment to be powered with both conventional alternate current (AC) and DC is presented. A specific differentiation is done upon indoor and outdoor applications where new standards and regulations, specific technical procedures, and singular experimental project descriptions are detailed. The results expose the advantages and difficulties of implementation of this new DC paradigm, the main conclusion obtained up to this moment, and trends of future evolution

    The GB4.0 Platform, an All-In-One Tool for CRISPR/Cas-Based Multiplex Genome Engineering in Plants

    Get PDF
    CRISPR/Cas ability to target several loci simultaneously (multiplexing) is a game-changer in plant breeding. Multiplexing not only accelerates trait pyramiding but also can unveil traits hidden by functional redundancy. Furthermore, multiplexing enhances dCas-based programmable gene expression and enables cascade-like gene regulation. However, the design and assembly of multiplex constructs comprising tandemly arrayed guide RNAs (gRNAs) requires scarless cloning and is still troublesome due to the presence of repetitive sequences, thus hampering a more widespread use. Here we present a comprehensive extension of the software-assisted cloning platform GoldenBraid (GB), in which, on top of its multigene cloning software, we integrate new tools for the Type IIS-based easy and rapid assembly of up to six tandemly-arrayed gRNAs with both Cas9 and Cas12a, using the gRNA-tRNA-spaced and the crRNA unspaced approaches, respectively. As stress tests for the new tools, we assembled and used for Agrobacterium-mediated stable transformation a 17 Cas9-gRNAs construct targeting a subset of the Squamosa-Promoter Binding Protein-Like (SPL) gene family in Nicotiana tabacum. The 14 selected genes are targets of miR156, thus potentially playing an important role in juvenile-to-adult and vegetative-to-reproductive phase transitions. With the 17 gRNAs construct we generated a collection of Cas9-free SPL edited T plants harboring up to 9 biallelic mutations and showing leaf juvenility and more branching. The functionality of GB-assembled dCas9 and dCas12a-based CRISPR/Cas activators and repressors using single and multiplexing gRNAs was validated using a Luciferase reporter with the Solanum lycopersicum Mtb promoter or the Agrobacterium tumefaciens nopaline synthase promoter in transient expression in Nicotiana benthamiana. With the incorporation of the new web-based tools and the accompanying collection of DNA parts, the GB4.0 genome edition turns an all-in-one open platform for plant genome engineering

    Relationship between petal abscission and programmed cell death in Prunus yedoensis and Delphinium belladonna

    Get PDF
    Depending on the species, the end of flower life span is characterized by petal wilting or by abscission of petals that are still fully turgid. Wilting at the end of petal life is due to programmed cell death (PCD). It is not known whether the abscission of turgid petals is preceded by PCD. We studied some parameters that indicate PCD: chromatin condensation, a decrease in nuclear diameter, DNA fragmentation, and DNA content per nucleus, using Prunus yedoensis and Delphiniumbelladonna which both show abscission of turgid petals at the end of floral life. No DNA degradation, no chromatin condensation, and no change in nuclear volume was observed in P. yedoensis petals, prior to abscission. In abscising D.belladonna petals, in contrast, considerable DNA degradation was found, chromatin was condensed and the nuclear volume considerably reduced. Following abscission, the nuclear area in both species drastically increased, and the chromatin became unevenly distributed. Similar chromatin changes were observed after dehydration (24 h at 60°C) of petals severed at the time of flower opening, and in dehydrated petals of Ipomoea nil and Petunia hybrida, severed at the time of flower opening. In these flowers the petal life span is terminated by wilting rather than abscission. It is concluded that the abscission of turgid petals in D. belladonna was preceded by a number of PCD indicators, whereas no such evidence for PCD was found at the time of P. yedoensis petal abscission. Dehydration of the petal cells, after abscission, was associated with a remarkable nuclear morphology which was also found in younger petals subjected to dehydration. This nuclear morphology has apparently not been described previously, for any organism

    Dually biofortified cisgenic tomatoes with increased flavonoids and branched-chain amino acids content

    Get PDF
    Higher dietary intakes of flavonoids may have a beneficial role in cardiovascular disease prevention. Additionally, supplementation of branched-chain amino acids (BCAAs) in vegan diets can reduce risks associated to their deficiency, particularly in older adults, which can cause loss of skeletal muscle strength and mass. Most plant-derived foods contain only small amounts of BCAAs, and those plants with high levels of flavonoids are not eaten broadly. Here we describe the generation of metabolically engineered cisgenic tomatoes enriched in both flavonoids and BCAAs. In this approach, coding and regulatory DNA elements, all derived from the tomato genome, were combined to obtain a herbicide-resistant version of an acetolactate synthase (mSlALS) gene expressed broadly and a MYB12-like transcription factor (SlMYB12) expressed in a fruit-specific manner. The mSlALS played a dual role, as a selectable marker as well as being key enzyme in BCAA enrichment. The resulting cisgenic tomatoes were highly enriched in Leucine (21-fold compared to wild-type levels), Valine (ninefold) and Isoleucine (threefold) and concomitantly biofortified in several antioxidant flavonoids including kaempferol (64-fold) and quercetin (45-fold). Comprehensive metabolomic and transcriptomic analysis of the biofortified cisgenic tomatoes revealed marked differences to wild type and could serve to evaluate the safety of these biofortified fruits for human consumption.This work has been funded by grant PID2019-108203RB-100 from the Spanish Ministerio de Ciencia e Innovación, through the Agencia Estatal de Investigación (co-financed European Regional Development Fund). MVV acknowledges support by the Generalitat Valenciana and Fondo Social Europeo through a post-doctoral grant (APOSTD/2020/096) and by the European Molecular Biology Organization through a Short-Term Fellowship (ASTF 171-2013). JLR acknowledges support by the Spanish Ministry of Science and Innovation through a Juan de la Cierva-Incorporación grant (IJC2020-045612-I).Peer reviewe

    A polymeric nanomedicine diminishes inflammatory events in renal tubular cells

    Get PDF
    The polyglutamic acid/peptoid 1 (QM56) nanoconjugate inhibits apoptosis by interfering with Apaf-1 binding to procaspase-9. We now describe anti-inflammatory properties of QM56 in mouse kidney and renal cell models. In cultured murine tubular cells, QM56 inhibited the inflammatory response to Tweak, a non-apoptotic stimulus. Tweak induced MCP-1 and Rantes synthesis through JAK2 kinase and NF-kB activation. Similar to JAK2 kinase inhibitors, QM56 inhibited Tweak-induced NF-kB transcriptional activity and chemokine expression, despite failing to inhibit NF-kB-p65 nuclear translocation and NF-kB DNA binding. QM56 prevented JAK2 activation and NF-kB-p65(Ser536) phosphorylation. The anti-inflammatory effect and JAK2 inhibition by QM56 were observed in Apaf-12/2 cells. In murine acute kidney injury, QM56 decreased tubular cell apoptosis and kidney inflammation as measured by downmodulations of MCP-1 and Rantes mRNA expression, immune cell infiltration and activation of the JAK2-dependent inflammatory pathway. In conclusion, QM56 has an anti-inflammatory activity which is independent from its role as inhibitor of Apaf-1 and apoptosis and may have potential therapeutic relevance.This work was supported by grants from the Instituto de Salud Carlos III (www.isciii.es), FIS: PI07/0020, CP08/1083, PS09/00447 and ISCIII-RETICS REDINREN RD 06/0016; Sociedad Española de Nefrología (www.senefro.org). Álvaro Ucero, Sergio Berzal and Carlos Ocaña supported by Fundacion Conchita Rabago (www.fundacionconchitarabago.net), Alberto Ortiz by the Programa de Intensificación de la Actividad Investigadora in the Sistema Nacional de Salud of the Instituto de Salud Carlos III and the Agencia ‘‘Pedro Lain Entralgo’’ of the Comunidad de Madrid and CIFRA S-BIO 0283/2006 www.madrid.org/lainentralgo) and Adrián Ramos, by FIS (Programa Miguel Servet)

    Viral Bcl2s' transmembrane domain interact with host Bcl2 proteins to control cellular apoptosis

    Get PDF
    Viral control of programmed cell death relies in part on the expression of viral analogs of the B-cell lymphoma 2 (Bcl2) protein known as viral Bcl2s (vBcl2s). vBcl2s control apoptosis by interacting with host pro- and anti-apoptotic members of the Bcl2 family. Here, we show that the carboxyl-terminal hydrophobic region of herpesviral and poxviral vBcl2s can operate as transmembrane domains (TMDs) and participate in their homo-oligomerization. Additionally, we show that the viral TMDs mediate interactions with cellular pro- and anti-apoptotic Bcl2 TMDs within the membrane. Furthermore, these intra-membrane interactions among viral and cellular proteins are necessary to control cell death upon an apoptotic stimulus. Therefore, their inhibition represents a new potential therapy against viral infections, which are characterized by short- and long-term deregulation of programmed cell death

    Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp

    Get PDF
    [EN] Proanthocyanidins (PAs), or condensed tannins, are powerful antioxidants that remove harmful free oxygen radicals from cells. To engineer the anthocyanin and proanthocyanidin biosynthetic pathways to de novo produce PAs in two Nicotiana species, we incorporated four transgenes to the plant chassis. We opted to perform a simultaneous transformation of the genes linked in a multigenic construct rather than classical breeding or retransformation approaches. We generated a GoldenBraid 2.0 multigenic construct containing two Antirrhinum majus transcription factors (AmRosea1 and AmDelila) to upregulate the anthocyanin pathway in combination with two Medicago truncatula genes (MtLAR and MtANR) to produce the enzymes that will derivate the biosynthetic pathway to PAs production. Transient and stable transformation of Nicotiana benthamiana and Nicotiana tabacum with the multigenic construct were respectively performed. Transient expression experiments in N. benthamiana showed the activation of the anthocyanin pathway producing a purple color in the agroinfiltrated leaves and also the effective production of 208.5 nmol (-) catechin/g FW and 228.5 nmol (-) epicatechin/g FW measured by the p-dimethylaminocinnamaldehyde (DMACA) method. The integration capacity of the four transgenes, their respective expression levels and their heritability in the second generation were analyzed in stably transformed N. tabacum plants. DMACA and phoroglucinolysis/HPLC-MS analyses corroborated the activation of both pathways and the effective production of PAs in T0 and T1 transgenic tobacco plants up to a maximum of 3.48 mg/g DW. The possible biotechnological applications of the GB2.0 multigenic approach in forage legumes to produce "bloatsafe" plants and to improve the efficiency of conversion of plant protein into animal protein (ruminal protein bypass) are discussed.This work was supported by grants BIO2012-39849-C02-01 and BIO2016-75485-R from the Spanish Ministry of Economy and Competitiveness (MINECO) (http://www.idi.mineco.gob.es/portal/site/MICINN) to LAC and a fellowship of the JAE-CSIC program to SF. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Fresquet-Corrales, S.; Roque Mesa, EM.; Sarrión-Perdigones, A.; Rochina, M.; López-Gresa, MP.; Díaz-Mula, HM.; Belles Albert, JM.... (2017). Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp. PLoS ONE. 12(9). https://doi.org/10.1371/journal.pone.0184839Se018483912

    Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector

    No full text
    Systems based on the clustered, regularly interspaced, short palindromic repeat (CRISPR) and CRISPR-associated proteins (Cas) have revolutionized genome editing in many organisms, including plants. Most CRISPR-Cas strategies in plants rely on genetic transformation using Agrobacterium tumefaciens to supply the gene editing reagents, such as Cas nucleases or the synthetic guide RNA (sgRNA). While Cas nucleases are constant elements in editing approaches, sgRNAs are target-specific and a screening process is usually required to identify those most effective. Plant virus-derived vectors are an alternative for the fast and efficient delivery of sgRNAs into adult plants, due to the virus capacity for genome amplification and systemic movement, a strategy known as virus-induced genome editing. We engineered Potato virus X (PVX) to build a vector that easily expresses multiple sgRNAs in adult solanaceous plants. Using the PVX-based vector, Nicotiana benthamiana genes were efficiently targeted, producing nearly 80% indels in a transformed line that constitutively expresses Streptococcus pyogenes Cas9. Interestingly, results showed that the PVX vector allows expression of arrays of unspaced sgRNAs, achieving highly efficient multiplex editing in a few days in adult plant tissues. Moreover, virus-free edited progeny can be obtained from plants regenerated from infected tissues or infected plant seeds, which exhibit a high rate of heritable biallelic mutations. In conclusion, this new PVX vector allows easy, fast and efficient expression of sgRNA arrays for multiplex CRISPR-Cas genome editing and will be a useful tool for functional gene analysis and precision breeding across diverse plant species, particularly in Solanaceae crops

    Compuestos para ser usados en el tratamiento de enfermedades basadas en la expresión de transcritos tóxicos con repeticiones CUG o CCUG

    No full text
    La presente invención hace referencia a moléculas peptídicas, concretamente hexapéptidos, para la prevención y/o tratamiento de enfermedades cuya etiología se basa en la presencia de transcritos tóxicos que comprenden repeticiones CUG o CCUG, preferentemente: DM1, DM2 Y SCA8.Peer reviewedUniversitat de Valencia, Fundación de la Comunidad Valenciana Centro de Investigación Principe Felipe, Consejo Superior de Investigaciones Científicas (España)A1 Solicitud de patente con informe sobre el estado de la técnic
    corecore