796 research outputs found
Effect of Acid Detergent Lignin Concentration in Alfalfa Leaves on Three Components of Resistance to Alfalfa Rust
As plant breeders select alfalfa (Medicago saliva) genotypes for improved digestibility by ruminants, there may be an increased risk of yield losses due to plant disease. This is because increases in digestibility are often associated with a decrease in lignin content and lignin has been shown to play an important role in plant defense mechanisms against disease and pests. The method most often employed by public and private alfalfa-breeding programs to assess digestibility is acid detergent lignin (ADL) analysis. ADL concentration was determined for individual alfalfa plants from two different alfalfa populations. Plants representing a range of ADL concentrations within each population were arbitrarily selected, cloned, and used in experiments to quantify the relationship between leaf ADL concentration and components of resistance to Uromyces striatus, the causal agent of alfalfa rust. Three components of resistance were quantified: infection efficiency (pustules per cm2 leaf area), latent period (the time from inoculation to when 50% of the pustules were visible), and sporulation capacity (the number of urediniospores produced per pustule). Although analysis of variance found significant differences among clones for infection efficiency, latent period, and sporulation capacity, regression analysis revealed little or no relationship between ADL concentration and components of alfalfa rust resistance. F statistics for regression equations and t statistics for slope parameters generally were not statistically significant and when these statistics were significant, coefficients of determination (r2) values indicated that ADL concentration explained only 23% or less of the variation in resistance components
SCUBA observations of the Horsehead Nebula - what did the horse swallow?
We present observations taken with SCUBA on the JCMT of the Horsehead Nebula
in Orion (B33), at wavelengths of 450 and 850 \mum. We see bright emission from
that part of the cloud associated with the photon-dominated region (PDR) at the
`top' of the horse's head, which we label B33-SMM1. We characterise the
physical parameters of the extended dust responsible for this emission, and
find that B33-SMM1 contains a more dense core than was previously suspected. We
compare the SCUBA data with data from the Infrared Space Observatory (ISO) and
find that the emission at 6.75-\mum is offset towards the west, indicating that
the mid-infrared emission is tracing the PDR while the submillimetre emission
comes from the molecular cloud core behind the PDR. We calculate the virial
balance of this core and find that it is not gravitationally bound but is being
confined by the external pressure from the HII region IC434, and that it will
either be destroyed by the ionising radiation, or else may undergo triggered
star formation. Furthermore we find evidence for a lozenge-shaped clump in the
`throat' of the horse, which is not seen in emission at shorter wavelengths. We
label this source B33-SMM2 and find that it is brighter at submillimetre
wavelengths than B33-SMM1. SMM2 is seen in absorption in the 6.75-\mum ISO
data, from which we obtain an independent estimate of the column density in
excellent agreement with that calculated from the submillimetre emission. We
calculate the stability of this core against collapse and find that it is in
approximate gravitational virial equilibrium. This is consistent with it being
a pre-existing core in B33, possibly pre-stellar in nature, but that it may
also eventually undergo collapse under the effects of the HII region.Comment: 11 pages, 6 figures, accepted by MNRA
Radiation thermometry: The measurement problem
An overview of the theory and techniques of radiometric thermometry is presented. The characteristics of thermal radiators (targets) are discussed along with surface roughness and oxidation effects, fresnel reflection and subsurface effects in dielectrics. The effects of the optical medium between the radiating target and the radiation thermometer are characterized including atmospheric effects, ambient temperature and dust environment effects and the influence of measurement windows. The optical and photodetection components of radiation thermometers are described and techniques for the correction of emissivity effects are addressed
Molecular gas freeze-out in the pre-stellar core L1689B
C17O (J=2-1) observations have been carried out towards the pre-stellar core
L1689B. By comparing the relative strengths of the hyperfine components of this
line, the emission is shown to be optically thin. This allows accurate CO
column densities to be determined and, for reference, this calculation is
described in detail. The hydrogen column densities that these measurements
imply are substantially smaller than those calculated from SCUBA dust emission
data. Furthermore, the C17O column densities are approximately constant across
L1689B whereas the SCUBA column densities are peaked towards the centre. The
most likely explanation is that CO is depleted from the central regions of
L1689B. Simple models of pre-stellar cores with an inner depleted region are
compared with the results. This enables the magnitude of the CO depletion to be
quantified and also allows the spatial extent of the freeze-out to be firmly
established. We estimate that within about 5000 AU of the centre of L1689B,
over 90% of the CO has frozen onto grains. This level of depletion can only be
achieved after a duration that is at least comparable to the free-fall
timescale.Comment: MNRAS letters. 5 pages, 5 figure
A SCUBA survey of L1689 - The dog that didn't bark
We present submillimetre data for the L1689 cloud in the rho-Ophiuchi
molecular cloud complex. We detect a number of starless and prestellar cores
and protostellar envelopes. We also detect a number of filaments for the first
time in the submillimetre continuum that are parallel both to each other, and
to filaments observed in the neighbouring L1688 cloud. These filaments are also
seen in the 13CO observations of L1689. The filaments contain all of the
star-formation activity in the cloud. L1689 lies next to the well studied L1688
cloud that contains the rho Oph-A core. L1688 has a much more active
star-formation history than L1689 despite their apparent similarity in 13CO
data. Hence we label L1689 as the dog that didn't bark. We endeavour to explain
this apparent anomaly by comparing the total mass of each cloud that is
currently in the form of dense material such as prestellar cores. We note
firstly that L1688 is more massive than L1689, but we also find that when
normalised to the total mass of each cloud, the L1689 cloud has a much lower
percentage of mass in dense cores than L1688. We attribute this to the
hypothesis of Loren (1989) that the star formation in the rho-Ophiuchi complex
is being affected and probably dominated by the external influence of the
nearby Upper Scorpius OB association and predominantly by sigma-Sco. L1689 is
further from sigma-Sco and is therefore less active. The influence of sigma-Sco
appears nonetheless to have created the filaments that we observe in L1689.
Accepted by MNRAS.Comment: 12 pages, 7 figure
Severe risk for Stewart\u27s disease
Stewart\u27s disease of corn, also known as Stewart\u27s wilt, is caused by the bacterium Pantoea stewartii. The 2000 growing season is predicted to be a very severe year for this disease, largely because of six successive winters with above-average monthly temperatures that have favored the survival of the insect vector for this disease, the corn flea beetle (Chaetocnema pulicaria). There are commonly two stages to the disease. Initially, leaf lesions that are off-green to yellow extend along the leaf veins, followed by mild-to-severe early seedling blight symptoms
SCUBA Polarization Measurements of the Magnetic Field Strengths in the L183, L1544, and L43 Prestellar Cores
We have mapped linearly polarized dust emission from L183 with the JCMT SCUBA
polarimeter and have analyzed these and our previously published data for the
prestellar cores L183, L1544, and L43 in order to estimate magnetic field
strengths in the plane of the sky, . The analysis used the
Chandrasekhar-Fermi technique, which relates the dispersion in polarization
position angles to . We have used these estimates of the field
strengths (neglecting the unmeasured line-of-sight component) to find the
mass-to-magnetic flux ratios (in units of the critical ratio for
magnetic support). Results are G and for L183, G and for
L1544, and G and for L43.
Hence, without correction for geometrical biases, for all three cores the
mass-to-flux ratios are supercritical by a factor of , and magnetic
support cannot prevent collapse. However, a statistical mean correction for
geometrical bias may be up to a factor of three; this correction would reduce
the individual 's to , 0.8, and 0.6,
respectively; these values are approximately critical or slightly subcritical.
These data are consistent with models of star formation driven by ambipolar
diffusion in a weakly turbulent medium, but cannot rule out models of star
formation driven by turbulence.Comment: Version 2 has minor revisions to reflect referee comments. Paper
accepted for ApJ publicatio
- âŠ