4,786 research outputs found
Science for Place-based Socioecological Management: Lessons from the Maya Forest (Chiapas and Petén)
The role humans should play in conservation is a pervasive issue of debate in environmental thinking. Two long-established poles of this debate can be identified on a preservation-sustainable use continuum. At one extreme are use bans and natural science-based, top-down management for preservation. At the other extreme is community-based, multidisciplinary management for sustainable resource use and livelihoods. In this paper, we discuss and illustrate how these two strategies have competed and conflicted in conservation initiatives in the Maya forest (MF) of the Middle Usumacinta River watershed (Guatemala and Mexico). We further argue that both extremes have produced unconvincing results in terms of the region’s sustainability. An alternative consists of sustainability initiatives based on place-based and integrated-knowledge approaches. These approaches imply a flexible combination of disciplines and types of knowledge in the context of nature-human interactions occurring in a place. They can be operationalized within the framework of sustainability science in three steps: 1) characterize the contextual circumstances that are most relevant for sustainability in a place; 2) identify the disciplines and knowledge(s) that need to be combined to appropriately address these contextual circumstances; and 3) decide how these disciplines and knowledge can be effectively combined and integrated. Epistemological flexibility in the design of analytic and implementation frameworks is key. Place-based and integrative-knowledge approaches strive to deal with local context and complexity, including that of human individuals and cultures. The success of any sustainability initiative will ultimately depend on its structural coupling with the context in which it is applied
The Applegate mechanism in Post-Common-Envelope Binaries: Investigating the role of rotation
Eclipsing time variations (ETVs) are observed in many close binary systems.
In particular, for several post-common-envelope binaries (PCEBs) that consist
of a white dwarf and a main sequence star, the O-C diagram suggests that real
or apparent orbital period variations are driven by Jupiter-mass planets or as
a result of magnetic activity, the so-called Applegate mechanism. The latter
explains orbital period variations as a result of changes in the stellar
quadrupole moment due to magnetic activity. We explore the feasibility of
driving ETVs via the Applegate mechanism for a sample of PCEB systems,
including a range of different rotations. Using the MESA code we evolve 12
stars with different masses and rotation rates. We apply a simple dynamo model
to their radial profiles to investigate on which scale the predicted activity
cycle matches the observed modulation period, and quantify the uncertainty, and
further calculate the required energies to drive que Applegate mechanism. We
show that the Applegate mechanism is energetically feasible in 5 PCEB systems,
and note that these are the systems with the highest rotation rate compared to
the critical rotation rate of the main-sequence star. The results suggest that
the ratio of physical to critical rotation in the main sequence star is an
important indicator for the feasibility of Applegate's mechanism, but exploring
larger samples will be necessary to probe this hypothesis.Comment: 9 pages, 5 figures. Accepted for publication in A&
Non-critically squeezed light via spontaneous rotational symmetry breaking
We theoretically address squeezed light generation through the spontaneous
breaking of the rotational invariance occuring in a type I degenerate optical
parametric oscillator (DOPO) pumped above threshold. We show that a DOPO with
spherical mirrors, in which the signal and idler fields correspond to first
order Laguerre-Gauss modes, produces a perfectly squeezed vacuum with the shape
of a Hermite-Gauss mode, within the linearized theory. This occurs at any
pumping level above threshold, hence the phenomenon is non-critical.
Imperfections of the rotational symmetry, due e.g. to cavity anisotropy, are
shown to have a small impact, hence the result is not singular.Comment: 4 pages, 1 figure, replaced with resubmitted versio
Bulge RR Lyrae stars in the VVV tile
The VISTA Variables in the V\'ia L\'actea (VVV) Survey is one of the six ESO
public surveys currently ongoing at the VISTA telescope on Cerro Paranal,
Chile. VVV uses near-IR () filters that at present provide
photometry to a depth of mag in up to 36 epochs spanning
over four years, and aim at discovering more than 10 variable sources as
well as trace the structure of the Galactic bulge and part of the southern
disk. A variability search was performed to find RR Lyrae variable stars. The
low stellar density of the VVV tile , which is centered at
() (), makes it suitable to search for
variable stars. Previous studies have identified some RR Lyrae stars using
optical bands that served to test our search procedure. The main goal is to
measure the reddening, interstellar extinction, and distances of the RR Lyrae
stars and to study their distribution on the Milky Way bulge. A total of 1.5 sq
deg were analyzed, and we found 39 RR Lyrae stars, 27 of which belong to the
ab-type and 12 to the c-type. Our analysis recovers all the previously
identified RR Lyrae variables in the field and discovers 29 new RR Lyrae stars.
The reddening and extinction toward all the RRab stars in this tile were
derived, and distance estimations were obtained through the period--luminosity
relation. Despite the limited amount of RR Lyrae stars studied, our results are
consistent with a spheroidal or central distribution around and
kpc. for either the Cardelli or Nishiyama extinction law.Comment: 10 pages, 8 figures, accepted for publication in Astronomy and
Astrophysic
Editorial: Judgment and decision making under uncertainty. Descriptive, normative, and prescriptive perspectives
Judgment and Decision Making Under Uncertainty: Descriptive, Normative, and Prescriptive Perspectives was motivated by our interest in better understanding why people judge and decide as they do (descriptive perspective), how they ideally ought to judge and decide (normative perspective), and how their judgment and decision-making processes might be improved in practice (prescriptive perspective). We sought papers that addressed some aspect of judgment and decision making from one or more of these three theoretical perspectives. We further sought contributions that examined judgment and decision making under conditions of uncertainty, which we intentionally left loosely defined. Our focus on uncertainty reflects the fact that the vast majority of decisions people make in life are not made under conditions of complete certainty, and the uncertainties may be more or less well-defined. Indeed, different components of a single judgment or decision may have multiple uncertainties associated with it, some of which may be fuzzier than others. Following our call for papers, we received 32 submissions, 17 of which were accepted. The latter set comprises this book. There are 11 original research articles, 2 hypothesis and theory articles, 2 perspectives, and 1 book review and systematic review each
Impact of the dicyanomethylene substitution position on the cyclophane macrocycle formation in carbazole-based biradicals
π-Conjugated biradical compounds, featuring unique unsaturated valences and radical centers in the ground state, are fundamentally important for understanding the nature of chemical bonds and have potential applications in material science. [1] Recently, it has been demonstrated that several -conjugated mono- and biradicals systems form long strain -bonds between two unpaired electrons resulting in macrocyclic or staircase oligomers or polymers by self-assembly processes. [2] Therefore, these materials are potential building blocks for dynamic covalent chemistry (DCC) since the aggregates can be formed or broken upon soft external stimuli. For instance, 2,7-dicyanomethylene-9-(2-ethylhexyl)carbazole biradical (p-Cz-alkyl in Figure 1) reversibly converts upon soft stimuli (temperature, pressure, light) to a cyclophane tetramer as a result from the formation (or bond cleavage) of long C-C single bonds.[3] Here, we present an experimental and theoretical study in order to investigate how the N-substitution and the change from para- to meta-dicyanomethylene substitution on carbazole-based biradicals affects their biradical character and thus, their tendency to act as useful motifs for DCC (see Figure 1).Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec
Inducing nonclassical lasing via periodic drivings in circuit quantum electrodynamics
We show how a pair of superconducting qubits coupled to a microwave cavity mode can be used to engineer a single-atom laser that emits light into a nonclassical state. Our scheme relies on the dressing of the qubit-field coupling by periodic modulations of the qubit energy. In the dressed basis, the radiative decay of the first qubit becomes an effective incoherent pumping mechanism that injects energy into the system, hence turning dissipation to our advantage. A second, auxiliary qubit is used to shape the decay within the cavity, in such a way that lasing occurs in a squeezed basis of the cavity mode. We characterize the system both by mean-field theory and exact calculations. Our work may find applications in the generation of squeezing and entanglement in circuit QED, as well as in the study of dissipative few- and many-body phase transitions
Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli
Stem cell fate has been linked to the mechanical properties of their underlying substrate, affecting mechanoreceptors and ultimately leading to downstream biological response. Studies have used polymers to mimic the stiffness of extracellular matrix as well as of individual tissues and shown mesenchymal stem cells (MSCs) could be directed along specific lineages. In this study, we examined the role of stiffness in MSC differentiation to two closely related cell phenotypes: osteoblast and chondrocyte. We prepared four methyl acrylate/methyl methacrylate (MA/MMA) polymer surfaces with elastic moduli ranging from 0.1 MPa to 310 MPa by altering monomer concentration. MSCs were cultured in media without exogenous growth factors and their biological responses were compared to committed chondrocytes and osteoblasts. Both chondrogenic and osteogenic markers were elevated when MSCs were grown on substrates with stiffnesschondrocytes, MSCs on lower stiffness substrates showed elevated expression of ACAN, SOX9, and COL2 and proteoglycan content; COMP was elevated in MSCs but reduced in chondrocytes. Substrate stiffness altered levels of RUNX2 mRNA, alkaline phosphatase specific activity, osteocalcin, and osteoprotegerin in osteoblasts, decreasing levels on the least stiff substrate. Expression of integrin subunits α1, α2, α5, αv, β1, and β3 changed in a stiffness- and cell type-dependent manner. Silencing of integrin subunit beta 1 (ITGB1) in MSCs abolished both osteoblastic and chondrogenic differentiation in response to substrate stiffness. Our results suggest that substrate stiffness is an important mediator of osteoblastic and chondrogenic differentiation, and integrin β1 plays a pivotal role in this process
Effect of energy density and virginiamycin supplementation in diets on growth performance and digestive function of finishing steers.
ObjectiveThis study was determined the influence of virginiamycin supplementation on growth-performance and characteristics of digestion of cattle with decreasing dietary net energy value of the diet for maintenance (NEm) from 2.22 to 2.10 Mcal/kg.MethodsEighty crossbred beef steers (298.2±6.3 kg) were used in a 152-d performance evaluation consisting of a 28-d adaptation period followed by a 124-d growing-finishing period. During the 124-d period steers were fed either a lesser energy dense (LED, 2.10 Mcal/kg NEm) or higher energy dense (HED, 2.22 Mcal/kg NEm) diet. Diets were fed with or without 28 mg/kg (dry matter [DM] basis) virginiamycin in a 2×2 factorial arrangement. Four Holstein steers (170.4±5.6 kg) with cannulas in the rumen (3.8 cm internal diameter) and proximal duodenum were used in 4×4 Latin square experiment to study treatment effects on characteristics of digestion.ResultsNeither diet energy density nor virginiamycin affected average daily gain (p>0.10). As expected, dry matter intake and gain efficiency were greater (p<0.01) for LED- than for HED-fed steers. Virginiamycin did not affect estimated net energy value of the LED diet. Virginiamycin increased estimated NE of the HED diet. During daylight hours when the temperature humidity index averaged 81.3±2.7, virginiamycin decreased (p<0.05) ruminal temperature. Virginiamycin did not influence (p>0.10) ruminal or total tract digestion. Ruminal (p = 0.02) and total tract digestion (p<0.01) of organic matter, and digestible energy (p<0.01) were greater for HED vs LED. Ruminal microbial efficiency was lower (p<0.01) for HED vs LED diets.ConclusionThe positive effect of virginiamycin on growth performance of cattle is due to increased efficiency of energy utilization, as effects of virginiamycin on characteristics of digestion were not appreciable. Under conditions of high ambient temperature virginiamycin may reduce body temperature
Simulating quantum-optical phenomena with cold atoms in optical lattices
We propose a scheme involving cold atoms trapped in optical lattices to
observe different phenomena traditionally linked to quantum-optical systems.
The basic idea consists of connecting the trapped atomic state to a non-trapped
state through a Raman scheme. The coupling between these two types of atoms
(trapped and free) turns out to be similar to that describing light-matter
interaction within the rotating-wave approximation, the role of matter and
photons being played by the trapped and free atoms, respectively. We explain in
particular how to observe phenomena arising from the collective spontaneous
emission of atomic and harmonic oscillator samples such as superradiance and
directional emission. We also show how the same setup can simulate Bose-Hubbard
Hamiltonians with extended hopping as well as Ising models with long-range
interactions. We believe that this system can be realized with state of the art
technology
- …
