227 research outputs found

    Frequency tuning, nonlinearities and mode coupling in circular graphene resonators

    Full text link
    We study circular nanomechanical graphene resonators by means of continuum elasticity theory, treating them as membranes. We derive dynamic equations for the flexural mode amplitudes. Due to geometrical nonlinearity these can be modeled by coupled Duffing equations. By solving the Airy stress problem we obtain analytic expressions for eigenfrequencies and nonlinear coefficients as functions of radius, suspension height, initial tension, back-gate voltage and elastic constants, which we compare with finite element simulations. Using perturbation theory, we show that it is necessary to include the effects of the non-uniform stress distribution for finite deflections. This correctly reproduces the spectrum and frequency tuning of the resonator, including frequency crossings.Comment: 21 pages, 7 figures, 3 table

    Determination of the Bending Rigidity of Graphene via Electrostatic Actuation of Buckled Membranes

    Get PDF
    The small mass and atomic-scale thickness of graphene membranes make them highly suitable for nanoelectromechanical devices such as e.g. mass sensors, high frequency resonators or memory elements. Although only atomically thick, many of the mechanical properties of graphene membranes can be described by classical continuum mechanics. An important parameter for predicting the performance and linearity of graphene nanoelectromechanical devices as well as for describing ripple formation and other properties such as electron scattering mechanisms, is the bending rigidity, {\kappa}. In spite of the importance of this parameter it has so far only been estimated indirectly for monolayer graphene from the phonon spectrum of graphite, estimated from AFM measurements or predicted from ab initio calculations or bond-order potential models. Here, we employ a new approach to the experimental determination of {\kappa} by exploiting the snap-through instability in pre-buckled graphene membranes. We demonstrate the reproducible fabrication of convex buckled graphene membranes by controlling the thermal stress during the fabrication procedure and show the abrupt switching from convex to concave geometry that occurs when electrostatic pressure is applied via an underlying gate electrode. The bending rigidity of bilayer graphene membranes under ambient conditions was determined to be 35.515+2035.5^{+20}_{-15} eV. Monolayers have significantly lower {\kappa} than bilayers

    Novel Developmental Analyses Identify Longitudinal Patterns of Early Gut Microbiota that Affect Infant Growth

    Get PDF
    It is acknowledged that some obesity trajectories are set early in life, and that rapid weight gain in infancy is a risk factor for later development of obesity. Identifying modifiable factors associated with early rapid weight gain is a prerequisite for curtailing the growing worldwide obesity epidemic. Recently, much attention has been given to findings indicating that gut microbiota may play a role in obesity development. We aim at identifying how the development of early gut microbiota is associated with expected infant growth. We developed a novel procedure that allows for the identification of longitudinal gut microbiota patterns (corresponding to the gut ecosystem developing), which are associated with an outcome of interest, while appropriately controlling for the false discovery rate. Our method identified developmental pathways of Staphylococcus species and Escherichia coli that were associated with expected growth, and traditional methods indicated that the detection of Bacteroides species at day 30 was associated with growth. Our method should have wide future applicability for studying gut microbiota, and is particularly important for translational considerations, as it is critical to understand the timing of microbiome transitions prior to attempting to manipulate gut microbiota in early life

    Incidences and Risk Factors of Organ Manifestations in the Early Course of Systemic Sclerosis: A Longitudinal EUSTAR Study

    Get PDF
    Objective Systemic sclerosis (SSc) is a rare and clinically heterogeneous autoimmune disorder characterised by fibrosis and microvascular obliteration of the skin and internal organs. Organ involvement mostly manifests after a variable period of the onset of Raynaud's phenomenon (RP). We aimed to map the incidence and predictors of pulmonary, cardiac, gastrointestinal (GI) and renal involvement in the early course of SSc. Methods In the EUSTAR cohort, patients with early SSc were identified as those who had a visit within the first year after RP onset. Incident SSc organ manifestations and their risk factors were assessed using Kaplan-Meier methods and Cox regression analysis. Results Of the 695 SSc patients who had a baseline visit within 1 year after RP onset, the incident non-RP manifestations (in order of frequency) were: skin sclerosis (75%) GI symptoms (71%), impaired diffusing capacity for monoxide40mmHg (14%), and renal crisis (3%). In the heart, incidence rates were highest for diastolic dysfunction, followed by conduction blocks and pericardial effusion. While the main baseline risk factor for a short timespan to develop FVC impairment was diffuse skin involvement, for PAPsys>40mmHg it was higher patient age. The main risk factors for incident cardiac manifestations were anti-topoisomerase autoantibody positivity and older age. Male sex, anti-RNA-polymerase-III positivity, and older age were risk factors associated with incident renal crisis. Conclusion In SSc patients presenting early after RP onset, approximately half of all incident organ manifestations occur within 2 years and have a simultaneous rather than a sequential onset. These findings have implications for the design of new diagnostic and therapeutic strategies aimed to ‘widen' the still very narrow ‘window of opportunity'. They may also enable physicians to counsel and manage patients presenting early in the course of SSc more accurately

    Self-assembly of defined core–shell ellipsoidal particles at liquid interfaces

    Get PDF
    Hypothesis: Ellipsoidal particles confined at liquid interfaces exhibit complex self-assembly due to quadrupolar capillary interactions, favouring either tip-to-tip or side-to-side configurations. However, predicting and controlling which structure forms remains challenging. We hypothesize that introducing a polymer-based soft shell around the particles will modulate these capillary interactions, providing a means to tune the preferred self-assembly configuration based on particle geometry and shell properties. Experiments: We fabricate core–shell ellipsoidal particles with defined aspect ratios and shell thickness through thermo-mechanical stretching. Using interfacial self-assembly experiments, we systematically explore how aspect ratio and shell thickness affect the self-assembly configurations. Monte Carlo simulations and theoretical calculations complement the experiments by mapping the phase diagram of thermodynamically preferred structures as a function of core–shell properties. Findings: Pure ellipsoidal particles without a shell consistently form side-to-side “chain-like” assemblies, regardless of aspect ratio. In contrast, core–shell ellipsoidal particles exhibit a transition from tip-to-tip “flower-like” arrangements to side-to-side structures as aspect ratio increases. The critical aspect ratio for this transition shifts with increasing shell thickness. Our results highlight how we can engineer the self-assembly of anisotropic particles at liquid interfaces by tuning their physicochemical properties such as aspect ratio and shell thickness, allowing the deterministic realization of distinct structural configurations

    Programmable self-assembly of core-shell ellipsoids at liquid interfaces

    Full text link
    Ellipsoidal particles confined at liquid interfaces exhibit complex self-assembly behaviour due to quadrupolar capillary interactions induced by meniscus deformation. These interactions cause particles to attract each other in either tip-to-tip or side-to-side configurations. However, controlling their interfacial self-assembly is challenging because it is difficult to predict which of these two states will be preferred. In this study, we demonstrate that introducing a soft shell around hard ellipsoidal particles provides a means to control the self-assembly process, allowing us to switch the preferred configuration between these states. We study their interfacial self-assembly and find that pure ellipsoids without a shell consistently form a chain-like side-to-side assembly, regardless of aspect ratio. In contrast, core-shell ellipsoids transition from flower-like tip-to-tip to chain-like side-to-side arrangements as their aspect ratios increase. The critical aspect ratio for transitioning between these structures increases with shell-to-core ratios. Our experimental findings are corroborated by theoretical calculations and Monte Carlo simulations, which map out the phase diagram of thermodynamically preferred self-assembly structures for core-shell ellipsoids as a function of aspect ratio and shell-to-core ratios. This study shows how to program the self-assembly of anisotropic particles by tuning their physicochemical properties, allowing the deterministic realization of distinct structural configurations

    Update of EULAR recommendations for the treatment of systemic sclerosis

    Get PDF
    The aim was to update the 2009 European League against Rheumatism (EULAR) recommendations for the treatment of systemic sclerosis (SSc), with attention to new therapeutic questions. Update of the previous treatment recommendations was performed according to EULAR standard operating procedures. The task force consisted of 32 SSc clinical experts from Europe and the USA, 2 patients nominated by the pan-European patient association for SSc (Federation of European Scleroderma Associations (FESCA)), a clinical epidemiologist and 2 research fellows. All centres from the EULAR Scleroderma Trials and Research group were invited to submit and select clinical questions concerning SSc treatment using a Delphi approach. Accordingly, 46 clinical questions addressing 26 different interventions were selected for systematic literature review. The new recommendations were based on the available evidence and developed in a consensus meeting with clinical experts and patients. The procedure resulted in 16 recommendations being developed (instead of 14 in 2009) that address treatment of several SSc-related organ complications: Raynaud's phenomenon (RP), digital ulcers (DUs), pulmonary arterial hypertension (PAH), skin and lung disease, scleroderma renal crisis and gastrointestinal involvement. Compared with the 2009 recommendations, the 2016 recommendations include phosphodiesterase type 5 (PDE-5) inhibitors for the treatment of SSc-related RP and DUs, riociguat, new aspects for endothelin receptor antagonists, prostacyclin analogues and PDE-5 inhibitors for SSc-related PAH. New recommendations regarding the use of fluoxetine for SSc-related RP and haematopoietic stem cell transplantation for selected patients with rapidly progressive SSc were also added. In addition, several comments regarding other treatments addressed in clinical questions and suggestions for the SSc research agenda were formulated. These updated data-derived and consensus-derived recommendations will help rheumatologists to manage patients with SSc in an evidence-based way. These recommendations also give directions for future clinical research in SSc

    Translational research into gut microbiota: new horizons on obesity treatment: updated 2014

    Get PDF
    Obesity is currently a pandemic of worldwide proportions affecting millions of people. Recent studies have proposed the hypothesis that mechanisms not directly related to the human genome could be involved in the genesis of obesity, due to the fact that, when a population undergoes the same nutritional stress, not all individuals present weight gain related to the diet or become hyperglycemic. The human intestine is colonized by millions of bacteria which form the intestinal flora, known as gut flora. Studies show that lean and overweight human may present a difference in the composition of their intestinal flora; these studies suggest that the intestinal flora could be involved in the development of obesity. Several mechanisms explain the correlation between intestinal flora and obesity. The intestinal flora would increase the energetic extraction of non-digestible polysaccharides. In addition, the lipopolysaccharide from intestinal flora bacteria could trigger a chronic sub-clinical inflammatory process, leading to obesity and diabetes. Another mechanism through which the intestinal flora could lead to obesity would be through the regulation of genes of the host involved in energy storage and expenditure. In the past five years data coming from different sources established causal effects between intestinal microbiota and obesity/insulin resistance, and it is clear that this area will open new avenues of therapeutic to obesity, insulin resistance and DM2

    Digital ulcers predict a worse disease course in patients with systemic sclerosis

    Get PDF
    Objective: Systemic sclerosis (SSc) is a systemic autoimmune disease with high morbidity and significant mortality. There is a great need of predictors that would allow risk stratification of patients with SSc and ultimately initiation of treatment early enough to ensure optimal clinical results. In this study, we evaluated whether a history of digital ulcers (HDU) at presentation may be a predictor of vascular outcomes and of overall clinical worsening and death in patients with SSc. Methods: Patients from the EULAR Scleroderma Trials and Research (EUSTAR) database, satisfying at inclusion the 1980 American College of Rheumatology classification criteria for SSc, who had a follow-up of at least 3 years since baseline or who have died, were included in the analysis. HDU at presentation as a predictor of disease worsening or death was evaluated by Cox proportional hazards regression analysis. Results :3196 patients matched the inclusion criteria (male sex 13.2%, 33.4% diffuse subset). At presentation, 1092/3196 patients had an HDU (34.1%). In multivariable analysis adjusting for age, gender and all parameters considered potentially significant, HDU was predictive for the presence of active digital ulcers (DUs) at prospective visits (HR (95% CI)): 2.41(1.91 to 3.03), p<0.001, for an elevated systolic pulmonary arterial pressure on heart ultrasound (US-PAPs):1.36 (1.03 to 1.80), p=0.032, for any cardiovascular event (new DUs, elevated US-PAPs or LV failure):3.56 (2.26 to 5.62), p<0.001, and for death (1.53 (1.16 to 2.02), p=0.003). Conclusions :In patients with SSc, HDU at presentation predicts the occurrence of DUs at follow-up and is associated with cardiovascular worsening and decreased survival
    corecore