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Abstract 

The small mass and atomic-scale thickness of graphene membranes make them highly suitable for 

nanoelectromechanical devices such as e.g. mass sensors, high frequency resonators or memory elements. 

Although only atomically thick, many of the mechanical properties of graphene membranes can be described 

by classical continuum mechanics
1,2. 

An important parameter for predicting the performance and linearity of 

graphene nanoelectromechanical devices
3
 as well as for describing ripple formation

4
 and other properties such 

as electron scattering mechanisms
5
, is the bending rigidity, κ. In spite of the importance of this parameter it 

has so far only been estimated indirectly for monolayer graphene from the phonon spectrum of graphite
6
, 

estimated from AFM measurements
7,8 

or predicted from ab initio calculations
1,9,10 

or bond-order potential 

models
3,11

. Here, we employ a new approach to the experimental determination of κ by exploiting the snap-

through instability in pre-buckled graphene membranes. We demonstrate the reproducible fabrication of 

convex buckled graphene membranes by controlling the thermal stress during the fabrication procedure and 

show the abrupt switching from convex to concave geometry that occurs when electrostatic pressure is applied 

via an underlying gate electrode. The bending rigidity of bilayer graphene membranes under ambient 

conditions was determined to be 35.5–15
+20

. Monolayers have significantly lower κ than bilayers. 

 

Main text 

For deformations on a scale large compared to the inter atomic spacing, the mechanical properties of single 

layer graphene (SLG) as well as few layer graphene (FLG) can be modeled using the theory of two 

dimensional (2D) membranes. In this theory, the effective free energy is a functional of the transverse 

displacement w and the in-plane displacement vector u
12 

   (1) 

Here uαβ = (∂αuβ + ∂βuα + ∂αw∂βw)/2 is the strain tensor and the indices α and β run over the Cartesian 

coordinates x and y in the plane of the graphene sheet. Repeated indices are summed over. The material 

parameters in (1) are the bending rigidity κ and the Lamé coefficients μ and λ. Due to thermal fluctuations, for 

instance ripples, these parameters will in general depend on temperature T. 

While the combination C ≈ (λ + 2μ) corresponding to the 2D elastic modulus has been measured at room 

temperature to be close to its predicted zero-temperature value for graphene C ≈ 340 N m
–1 

(1, 13) a direct 

measurement of the bending rigidity κ is lacking both for SLG as well as FLG. The value often quoted for the 

bending rigidity of monolayer graphene (κ = 1.2 eV) was estimated from the phonon spectrum of graphite.(6) 

Using eq 1 is equivalent to treating the suspended membrane as a thin plate with a Young’s modulus E, 

Poisson’s ratio ν, and thickness h, if we make the identifications 
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   (2) 

The parameters Eh, ν, and h are then uniquely mapped onto the parameters κ, μ, and λ of eq 1. Here, E is not 

independent of h, rather it is the product Eh, which is determined. Often, as in experiments on SLG and FLG 

nano resonators,(14-16) in-plane stress dominates and the first term in (1) can be disregarded. In such cases 

one often sets h = 3.4 Å for SLG, the interplanar distance between the atomic layers in graphite. As Eh ≈ 340 

N m
–1

,(1, 13) this leads to E ≈ 1 TPa. However, from eqs 2 these values of E and h, together with ν ≈ 0.16,(17) 

give κ ≈ 20 eV, an order of magnitude larger than the 1 eV estimated from phonon measurements and ab-

initiocalculations. 

For SLG, the discrepancy stems from the different physical origins of bending rigidity in SLG and continuum 

thin plates. In thin plates, the nonzero κ originates from the compression/extension of the medium on either 

side of the neutral surface. In SLG, there is not a continuum in the direction perpendicular to the membrane 

and bond-order models have indicated two physical origins. One is due to the bond angle effect and the other 

results from the bond-order term associated with the dihedral angles.(10) Indeed, bond-order calculations give 

for SLG a T = 0 value κ ≈ 1.4 eV that is close to ab initio predictions of 1.46(1) or 1.6 eV(9)and to the 

experimental value derived from the phonon spectrum of graphite (1.2 eV).(6) For T> 0, ripples in SLG are 

predicted to increase κ at long wavelengths.(4) For FLG, one expects to approach the thin plate theory scaling, 

κ  h
3
, as the number of layers grows. For bilayer graphene (BLG) and trilayer graphene (TLG), ab initio 

calculations and estimates using bond-order potentials have, for T = 0 K, predicted κBLG ≈ 160–180 eV and 

κTLG≈ 660–690 eV.(9, 11) In these calculations, the contributions to κ come mainly from the energy required 

to stretch/compress the upper/lower graphene layer as in thin plate theory. However, in contrast to SLG, 

where thermal fluctuations are predicted to increase κ, for FLG at T > 0 K, local thermal interplane distance 

fluctuations have been predicted to soften the bending rigidity,(12)approaching κBLG ≈ 2κSLG ≈ 3 eV at room 

temperature. The large deviation between κ(T = 0 K) 10
2
 eV and the finite temperature estimate of a few 

electronvolts makes it important to experimentally determine the value of κ for T > 0 K. 

Nanoindentation measurements have been used to extract values for the bending rigidities of suspended 

multilayer graphene (≥8 layers).(7) In such experiments, a force versus deflection curve is obtained by 

pushing the suspended part of the sample with an AFM-tip. However, extracting κ in this way is problematic 

for two reasons. The first comes from the large in-plane stiffness of graphene that implies that a deformation 

of w  1 Å will cause stretching contributions to dominate. Second, suspended samples are commonly under 

finite tensile strain due to electrode adhesion effects. Despite the inherent difficulties with the technique, the 

extracted values fit reasonably well to the results of modeling the suspended membranes as thin plates. Using 

eq 2 to fit the data of Poot and van der Zant(7) yields (measuring h in nm) κ = 570h
3
 eV, E = 0.92 TPa and ν = 

0.16. A second AFM technique studies the deformation that graphene layers produce on a microcorrugated 

elastic surface.(8) A model is then used to extract a so-called flattening factor that can be related to the 
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bending rigidity as a function of the number of layers. This technique also contains uncertainty with respect to 

the influence of tension and interface strength. The best fit for the dependence of κ on h, yields κ = 182h
3
 eV 

(with h in nanometers). 

In this letter, we exploit snap-through instabilities in prebuckled graphene. In the fabrication of suspended 

samples (beams and circular/elliptic drums), a controlled compressive strain is built in before under-etching 

the devices to produce the suspended SLG and FLG. When released, this leads to convex buckled geometries 

with zero built-in strain. In most of our samples, the suspended regions are buckled upward away from the 

substrate. We attribute this to adhesive forces between the graphene and the electrodes. This effect of 

adhesion to the clamping points, which in our case is a result of under etching, has been observed previously 

for graphene on top of holes.(13) By biasing the backgate, an electrostatic pressure is applied to the 

membranes. Our method is based on relating the snap-through voltage to the local curvature, measured by 

AFM, and observing at what pressure the membrane undergoes a buckling deformation. 

To extract κ we note, from the analogy with thin plate theory, that our buckled membranes are expected to 

show similar deformation properties to those of convex shells. Fully clamped shells display buckling 

instability under external pressure that is observed as a snap-through from locally convex to locally concave 

buckling(18) at a critical pressure pc. The development of a shell under external pressure is sketched in Figure 

1a–c. When pressure is applied, a shell with nonzero Gaussian curvature deforms first locally in the region 

around the structurally weakest point (see Figure 1a). While this deformation lowers the energy due to 

pressure–volume (PV) work, it is at the expense of increasing the contributions from elastic energy (mainly 

stretching/compression). For small deformations, the balance between the elastic energy and the PV-term 

makes the system stable. For a deformed region larger than a critical size however, it becomes energetically 

favorable to form a large angle bend (Figure 1b) surrounding an inward bulge. Following Pogorelov(18) we 

assume that this inward bulge forms a mirror reflection of the original surface in a plane perpendicular to the 

symmetry axis. Inside the bulge, the curvature of the deformed shell is then identical in magnitude to the 

initial surface. Hence, in this region the elastic energy density remains unchanged. The major contribution to it 

comes instead from a narrow region around the edge of the bulge, in the figure denoted by Γ. This energy is 

given by U = (4κn(λ + 2μ))
1/2

∫ds kn
2
/kΓ, where kΓ is the curvature of Γ, n is the number of graphene layers, and 

kn is the normal curvature of the shell along Γ. As the work done by the pressure is proportional to the area 

inside the bulge, this state is unstable and the edge of the bulge propagates outward. This continues until the 

propagation is hindered by the edges or defects in the sample at which point the shell is said to have “snapped 

through” (Figure 1c). A detailed calculation, following Pogorelov,(18) for our fully clamped structures gives 

the following expression for the pressure at which the critical deformation is reached 

   (3) 
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Here R1 and R2 are the principal radii of curvature (in orthogonal directions) at the point where the instability 

starts. As (λ + 2μ) ≈ 340 Nm
–1

 we can use relation 3 to extract κ from measured values of pc and R1,2. For the 

beams, the inclusion of free edges makes the problem intractable analytically. However, following the 

argumentation outlined in Landau and Lifschitz,(19) the scaling of the critical pressure can still be obtained. 

We find that the scaling of the critical pressure for the beams is 

   (4) 

where R1 is the curvature in the direction along the long axis of the beam and R2 is the curvature in the 

perpendicular direction. 

 

 

Figure 1. Schematic pictures showing the snap-through of a convex shell. (Left) For pressure smaller than a 

critical pressure pc, a small finite deformation is formed in the region Ω . (Middle) As the critical pressure pc is 

reached it becomes energetically favorable to form a concave region where the elastic energy is confined to a 

narrow region around the annulus Γ. (Right) As the concave configuration in middle panel is unstable, the 

deformation propagates outward, the membrane “snaps-through”. By measuring the radii of curvature R1,2 and 

relating the pressure to the applied backgate voltage when the membrane snaps though, pc can be determined. 

 

Figure 2 shows two suspended BLG beams fabricated using the techniques detailed in the Methods section. 

Figure 2a shows an exaggerated schematic illustrating the way in which the beams are attached to the 

electrodes and the convex curvature produced when the substrate is etched away from the graphene. From the 

measured AFM profile in Figure 2b it can be clearly seen that the beams are buckled to give a convex 

geometry. In this example, the lengths of the beams are on average 0.12% longer than the horizontal end-to-

end-distance. The buckling is also just detectable in the SEM picture in Figure 2c where it is also possible to 

observe the under-etching of the electrodes. 

javascript:void(0);
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The observed buckling is a consequence of the mismatch between the thermal expansion coefficients of the 

graphene and the underlying SiO2 substrate due to thermal cycling prior to etching (see above). Hence, before 

under-etching the thermal cycling results in a compressive strain in the graphene lying on the SiO2. The 

buckling arises upon release (etching) as the built-in compressive strain causes the suspended sheet to be 

slightly larger than the exposed hole. Evidence for this is provided in the form of temperature-dependent 

Raman measurements detailed in the Supporting Information. The results are very reproducible in the sense 

that suspended membranes made from the same graphene sheet and having undergone the same thermal 

cycling show the same amount of built-in compressive strain before under etching and the same relative 

extension after under-etching. Hence, the buckling in our samples could be controlled by the extent of thermal 

cycling to which the substrate was exposed. In particular, for samples where thermal cycling was avoided 

during lithography no buckling was observed (see Supporting Information). 

 

 

Figure 2. (a) Schematic picture of under-etched suspended graphene beams. When the graphene is under-

etched it is released. The built-in compressive strain together with the adhesion to the electrodes will result in 

a buckled shape with the graphene curving away from the substrate. (b) AFM scan of two suspended bilayer 

beams showing convex buckled shapes. The length of the beams is 2 μm and the center of the beam is ca. 25 

nm higher than the clamped edges. (c) SEM image of a suspended beam with visible upward buckling. The 

scale bar is 1 μm.  
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Figure 3 shows contour plots derived from AFM scans of the beams in Fig. 2(b) that demonstrate the 

influence of applying a voltage to the back gate, Vbg, on the geometry of the suspended beams. Both beams 

clearly switch abruptly from a convex to a concave geometry as the applied voltage is increased. The 

switching is reversible. This is quite different behaviour to that observed for suspended graphene beams that 

do not have this initial buckled shape. As we have shown previously, in that case there is a continuous 

deflection of the suspended membrane until it snaps to contact with the underlying substrate when the pull-in 

voltage has been exceeded 18. The abrupt switching can be more clearly seen in Fig. 4 where AFM line scans 

along the long axis of one of the bilayer beams are shown as a function of actuation voltage. In this particular 

example the membrane snaps from convex to concave at a voltage slightly below Vbg = 3V. The deflection 

curve shown in Fig. 4d is obtained by placing the AFM tip at a fixed position in the centre of the beam and 

sweeping Vbg while measuring the deflection from the initial position. This shows that there is a sharp 

snapthrough from convex to concave buckling where the beam deflects a large distance for a small change in 

Vbg. For the device shown in Fig. 4, a deflection of 89 nm occurs between Vbg=2.5 V and Vbg=2.7 V. Similar 

switching was observed for several beams of SLG, BLG and TLG (more examples are found in the 

Supporting Information) with the switching becoming more abrupt and the geometry more clearly defined for 

BLG and TLG compared to SLG. 

 

 

Figure 3. Contour plots showing the height profiles of the two suspended BLG membranes from Fig. 2b as a 

function of applied gate voltage, Vbg. The units of the x and y-axes are μm, the unit of the z-axes is nm. (a) Vbg 

= 0V, (b) Vbg = 3V, (c) Vbg = 6V, (d) Vbg = 3V, (e) Vbg = 0V. 
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Figure 4. (a), (b) AFM scans of the BLG membranes from Fig.2(b) with Vbg = 0V and 3V. (c) Line scans 

along the right hand membrane (following the dashed line in (a)) as a function of Vbg. (d) Deflection versus 

Vbg plot for the right hand membrane measured at the position marked with a cross in (a). The deflection is 

defined as the deviation from the equilibrium distance at Vbg=0V measured at the centre of the beam (position 

indicated by arrow in 4(c)). 

 

The beam structures clearly show a curvature along the long axis of the beam (measured between the two 

clamping electrodes) as is most apparent in Figure 4c and the rapid snap-through predicted for convex shells. 

However, since the beams are not fully clamped around their circumference, it is not possible to apply the 

model as developed by Pogorelov to extract an absolute value of κ. For this reason, we have also fabricated 

fully clamped membranes of circular or elliptical shape. In this case, the membranes clearly show radii of 

curvature in two orthogonal directions and it is possible to treat them as deforming convex shells using eq 3. 

An example of a circular suspended BLG membrane is shown in Figure 5. 

 



Page 8 of 15 

 

 

Figure 5. (a) Graphene “frying pan” pattern used to fabricate fully clamped circular membranes. (b) A square 

electrode with a hole in the middle is patterned on top of the graphene, light-gray in figure. The graphene is 

clamped by the electrode in the midgray areas and left exposed in dark-gray areas. When the substrate is 

etched, the bottom-side of the handle of the “frying pan” is exposed outside the electrode. The etchant is able 

to penetrate freely under the graphene all the way underneath the shape of the “frying pan” and continues to 

under-etch the electrode, thus suspending the whole area inside the dashed line in Figure 5b. (c) AFM scan of 

a suspended circular membrane. (d) Line scan across the center of the suspended membrane corresponding to 

the dashed line in (b). The smooth line illustrates the fitted curvature. (e) Deflection versus Vbg curve obtained 

with the AFM tip at the center of the suspended fully clamped BLG membrane. The deflection is defined as 

the deviation from the equilibrium distance at Vbg= 0 V measured at the center of the beam. 

 

 

Figure 6. Plot used to determine κ for fully clamped BLG. κ is determined from the value of the y- intercept 

at x = 0. Diamonds: average experimental values obtained from fitting the radii of curvature from at least six 
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AFM line scans on each substrate, error bars indicate the standard deviation of the fitted radii. The full line is 

a straight-line fit to the data and the dashed lines indicate the stated error limits. 

 

The electrostatic pressure applied in the experiments can be calculated from the parallel plate model. Then, 

from eq 3 the bending rigidity κ is given by 

   (5) 

where d is the effective distance to the gate (243 nm, accounting for the dielectric constant of the remaining 

oxide layer), ε0 is the vacuum permittivity, and Vc is the critical voltage at which snap-through occurs. The 

validity of the parallel plate model has been checked with FEM simulations (Supporting Information). Using 

(λ + 2μ) = 340 Nm
–1

 we plot in Figure 6, log[(ε0Vc
4
)/64n(λ+2 μ)] against log[d

2
/R1R2]

2
 for the experimental 

devices. According to the model, the points should then fall along a straight line with unit slope. The bending 

rigidity can then be determined from the value of the y-axis intercept. 

The results in Figure 6 are for fully clamped circular and elliptical BLG membranes. We attempted to produce 

similar structures with SLG membranes but this proved to be very difficult and the membranes typically broke 

or did not show a well-defined curvature making the analysis extremely unreliable. The principal curvatures 

of the BLG membranes were determined by fitting the deflection data from the AFM measurements in 

orthogonal directions, similar to the example shown in Figure 5d. The results are tabulated in the Supporting 

Information along with the values determined for the snap-through voltage, Vc. The stated radii are the 

average values obtained from fitting at least six AFM line scans for each membrane with the error bars given 

by the standard deviation of the fitted radii. In order to extract κ, the gradient was constrained to be 1 (as 

expected from eq 4 and consistent with a fitted value of 1.1 ± 0.16) and the intercept was determined from a 

least-squares fit. The fit line is shown as a full line in Figure 6 with the estimated error limits indicated by 

dashed lines. The value obtained for the bending rigidity is κ = 35.5–15.0
+20.0

 eV. This value is significantly 

lower than the value estimated from eq 2, using E = 0.92 TPa and h = 6.8 Å (giving κBLG = 155 eV), and the 

values obtained from zero-temperature ab initio calculations for BLG (κBLG = 160–180 eV(9, 11)). It is, 

however, considerably higher than the predicted value that assumes two independent monolayers at room 

temperature (κBLG = 3 eV).(11) The agreement between continuum theory and the experimental results 

presented here (eq 5) provides convincing evidence that the continuum theory approach (eq 1) is valid for 

BLG membranes under ambient conditions provided that one adopts a value of κ that falls between the two 

extremes of the theoretical predictions. 

We have also analyzed the radii of curvature (along the long-axis of the beam) and critical switching voltages 

for a number of doubly clamped graphene beams including SLG, BLG, and TLG (data included in Supporting 

Information). This data has been plotted in Figure 7 in a plot of log(Vc
4
) versus log(R1

–3
), following eq 4. The 
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data from the BLG doubly clamped beams fall on a straight line in this plot. Assuming that the bending 

rigidity for the beams is identical to that for the BLG fully clamped membranes, we can estimate the value of 

κ for the monolayer beams by comparing the values of the y-intercept on this plot. The comparison yields an 

estimate of κSLG = 7.1–3.0
+4.0

 eV for the monolayer and κTLG = 126–53
+71

 eV for the tri-layer. 

 

 

Figure 7. Data for doubly clamped beams showing the expected linear behavior for a plot of log(Vc) versus 

log(R1
–3

), see eqs 4 and 5. Filled diamonds, doubly clamped BLG; open diamonds, SLG; open square, TLG. 

The full line is a least-squares fit to the BLG data yielding an intercept of 5.5. The dashed lines show the 

estimated fits for the SLG (intercept 4.8) and TLG (intercept 6.05) data. The bending rigidity can be extracted 

by assuming that the bending rigidity of the doubly clamped BLG ribbons is identical to that of the fully 

clamped membranes. This yields estimated values of κSLG = 7.1–3.0
+4.0

 eV and κTLG = 126–53
+71

 eV. 

By studying the voltage-induced snap-through of convex buckled membranes and beams of suspended 

graphene, we have shown that the mechanical behavior of BLG membranes can be described within 

continuum theory by treating them as convex shells but we also show that care must be taken in the choice of 

the parameters to be used and it is not always appropriate to scale-down from the bulk values. The value that 

we obtain for the bending rigidity of BLG at room temperature under ambient conditions (35.5–15.0
+20.0

 eV) is 

the first experimental determination of this parameter for BLG. The value lies in between the two extreme 

theoretical predictions for two completely independent monolayers at finite temperature and for bilayers at 0 

K. An accurate experimental determination of κ is crucial for understanding and correctly modeling the 

mechanical behavior of this important new material. The method that we present here is straightforward and 

can easily be extended to thicker graphene layers or other thin layer materials that can be fabricated to give 

similar geometries. 
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Methods 

Graphene was obtained from mechanical exfoliation on silicon substrates with 295 nm oxide19. Optical 

microscopy was used for finding the location of flakes with a suitable shape and number of layers. The 

number of layers was determined by the optical contrast and confirmed by Raman spectroscopy on selected 

samples. Graphene flakes were shaped into the desired geometry using electron-beam lithography (EBL) to 

pattern a resist mask (positive resist PMMA). The resist was typically baked at 160 °C to remove solvants 

after spin-coating. A low-power oxygen-plasma that removed 10 nm of resist, was used to etch the non-

masked graphene. The resist mask was removed in acetone leaving the patterned graphene. A bilayer resist 

composed of bottom-layer copolymer MMA-MAA and top-layer PMMA was used to pattern the electrodes 

used to clamp and electrically contact the graphene structures. Evaporation of 3 nm Cr and 150 nm Au was 

done using e-gun evaporation. Cr was used as adhesion layer since it is compatible with HF-etching. A 

relatively thick layer of Au was used to avoid electrostatic actuation of the suspended part of the electrodes. 

Bi-layer resist was used to ensure an under-cut, facilitating lift-off after evaporation. Lift-off was done using 

ultra-sonic agitation in hot acetone. To suspend the graphene beams, the substrate was wet-etched using HF. 

During etching the electrodes act as an etch-mask. The etchant penetrates freely under the graphene beam. 

Conditions were chosen to etch away 225 nm of the underlying oxide under the entire patterned graphene 

structure, including the graphene covered by the electrodes. Thus to avoid excessive under-etching of 

electrodes, causing their electrostatic actuation during the later experiments, graphene patterns were formed 

first, making it possible to control the overlap distance between the electrodes and the graphene. Rinsing was 

done in milli-Q followed by IPA. After etching critical point drying was used to avoid collapse of the 

membranes due to surface tension effects during drying. Care was taken to ensure that there were no resist 

residues remaining on the graphene that may influence the bending rigidity measurements. It was possible to 

observe resist residue on supported graphene prior to substrate etching. This showed up as bright spots in the 

AFM height image and as dark spots in the AFM phase image. However, after etching in HF, this structure 

was usually removed. In order to check that any remaining resist residue did not influence the results of the 

bending rigidity measurements we also annealed some samples in Ar/H2 and confirmed that there was no 

significance difference in the determined bending rigidity. Raman spectra were obtained using a Renishaw 

micro-Raman spectrometer with a 514 nm excitation laser and spectral resolution better than 1 cm-1. The 

shape of the 2D peak was used to confirm the number of graphene layers, estimated from the optical contrast. 

Raman spectra were also measured in-situ on the same graphene flake during heating from room-temperature 

to 200 °C and during cooling back to room-temperature to determine the extent of thermal stress. The results 

are shown in the supporting information. 

Electrostatic actuation of the suspended graphene was achieved by applying a voltage, Vbg, to the silicon 

back-gate while keeping the graphene grounded. The depth of etching was chosen to have some remaining 

insulating SiO2 (70 nm) to avoid a short-circuit between the graphene and the back electrode even if one or 
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more of the graphene beams come into physical contact with the underlying substrate. Similar to previous 

studies of multi-walled carbon nanotubes20 and multi-layered graphene21, electrostatic deflection was 

imaged in-situ using AFM. The AFM was used in noncontact mode and measurements were carried out in air 

at 22 °C. To reduce the interaction between the suspended graphene and the AFM cantilever both were 

grounded. The AFM is operated under conditions where the force of interaction with the substrate is low and 

also operates at a frequency approximately two orders of magnitude lower than the resonant frequency of the 

membranes. We can therefore discount the influence of tip interactions for the substrates discussed in this 

paper.   
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