81 research outputs found

    Primula vulgaris (primrose) genome assembly, annotation and gene expression, with comparative genomics on the heterostyly supergene

    Get PDF
    Primula vulgaris (primrose) exhibits heterostyly: plants produce self-incompatible pin- or thrum-form flowers, with anthers and stigma at reciprocal heights. Darwin concluded that this arrangement promotes insect-mediated cross-pollination; later studies revealed control by a cluster of genes, or supergene, known as the S (Style length) locus. The P. vulgaris S locus is absent from pin plants and hemizygous in thrum plants (thrum-specific); mutation of S locus genes produces self-fertile homostyle flowers with anthers and stigma at equal heights. Here, we present a 411 Mb P. vulgaris genome assembly of a homozygous inbred long homostyle, representing ~87% of the genome. We annotate over 24,000 P. vulgaris genes, and reveal more genes up-regulated in thrum than pin flowers. We show reduced genomic read coverage across the S locus in other Primula species, including P. veris, where we define the conserved structure and expression of the S locus genes in thrum. Further analysis reveals the S locus has elevated repeat content (64%) compared to the wider genome (37%). Our studies suggest conservation of S locus genetic architecture in Primula, and provide a platform for identification and evolutionary analysis of the S locus and downstream targets that regulate heterostyly in diverse heterostylous species

    Human physiologically based pharmacokinetic model for propofol

    Get PDF
    BACKGROUND: Propofol is widely used for both short-term anesthesia and long-term sedation. It has unusual pharmacokinetics because of its high lipid solubility. The standard approach to describing the pharmacokinetics is by a multi-compartmental model. This paper presents the first detailed human physiologically based pharmacokinetic (PBPK) model for propofol. METHODS: PKQuest, a freely distributed software routine , was used for all the calculations. The "standard human" PBPK parameters developed in previous applications is used. It is assumed that the blood and tissue binding is determined by simple partition into the tissue lipid, which is characterized by two previously determined set of parameters: 1) the value of the propofol oil/water partition coefficient; 2) the lipid fraction in the blood and tissues. The model was fit to the individual experimental data of Schnider et. al., Anesthesiology, 1998; 88:1170 in which an initial bolus dose was followed 60 minutes later by a one hour constant infusion. RESULTS: The PBPK model provides a good description of the experimental data over a large range of input dosage, subject age and fat fraction. Only one adjustable parameter (the liver clearance) is required to describe the constant infusion phase for each individual subject. In order to fit the bolus injection phase, for 10 or the 24 subjects it was necessary to assume that a fraction of the bolus dose was sequestered and then slowly released from the lungs (characterized by two additional parameters). The average weighted residual error (WRE) of the PBPK model fit to the both the bolus and infusion phases was 15%; similar to the WRE for just the constant infusion phase obtained by Schnider et. al. using a 6-parameter NONMEM compartmental model. CONCLUSION: A PBPK model using standard human parameters and a simple description of tissue binding provides a good description of human propofol kinetics. The major advantage of a PBPK model is that it can be used to predict the changes in kinetics produced by variations in physiological parameters. As one example, the model simulation of the changes in pharmacokinetics for morbidly obese subjects is discussed

    Programmed DNA elimination of germline development genes in songbirds

    Get PDF
    In some eukaryotes, germline and somatic genomes differ dramatically in their composition. Here we characterise a major germline–soma dissimilarity caused by a germline-restricted chromosome (GRC) in songbirds. We show that the zebra finch GRC contains >115 genes paralogous to single-copy genes on 18 autosomes and the Z chromosome, and is enriched in genes involved in female gonad development. Many genes are likely functional, evidenced by expression in testes and ovaries at the RNA and protein level. Using comparative genomics, we show that genes have been added to the GRC over millions of years of evolution, with embryonic development genes bicc1 and trim71 dating to the ancestor of songbirds and dozens of other genes added very recently. The somatic elimination of this evolutionarily dynamic chromosome in songbirds implies a unique mechanism to minimise genetic conflict between germline and soma, relevant to antagonistic pleiotropy, an evolutionary process underlying ageing and sexual traits

    Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species

    Get PDF
    Background: The prevailing paradigm of host-parasite evolution is that arms races lead to increasing specialisation via genetic adaptation. Insect herbivores are no exception and the majority have evolved to colonise a small number of closely related host species. Remarkably, the green peach aphid, Myzus persicae, colonises plant species across 40 families and single M. persicae clonal lineages can colonise distantly related plants. This remarkable ability makes M. persicae a highly destructive pest of many important crop species. Results: To investigate the exceptional phenotypic plasticity of M. persicae, we sequenced the M. persicae genome and assessed how one clonal lineage responds to host plant species of different families. We show that genetically identical individuals are able to colonise distantly related host species through the differential regulation of genes belonging to aphid-expanded gene families. Multigene clusters collectively upregulate in single aphids within two days upon host switch. Furthermore, we demonstrate the functional significance of this rapid transcriptional change using RNA interference (RNAi)-mediated knock-down of genes belonging to the cathepsin B gene family. Knock-down of cathepsin B genes reduced aphid fitness, but only on the host that induced upregulation of these genes. Conclusions: Previous research has focused on the role of genetic adaptation of parasites to their hosts. Here we show that the generalist aphid pest M. persicae is able to colonise diverse host plant species in the absence of genetic specialisation. This is achieved through rapid transcriptional plasticity of genes that have duplicated during aphid evolution

    Non-invasive estimation of venous admixture: validation of a new formula

    No full text
    We have developed a computer program that estimates venous admixture (intra-pulmonary shunt) from four measurements: haemoglobin concentration, end-tidal carbon dioxide tension (PE'CO2), fractional inspired oxygen concentration (FIO2) and pulse oximetry (SpO2). The formula was tested on patients in an intensive therapy unit by using it to estimate shunt while it was measured simultaneously by a standard, invasive method. A total of 101 measurements were made in 29 patients. After correcting the systematic errors in the assumed differences between PE'CO2 and arterial PCO2, and between SpO2 and co-oximetrically measured SaO2, and correcting for a trend in the arteriovenous oxygen concentration difference (C(a-v))2) with shunt, the bias of the non-invasive minus invasive shunt differences was negligible, with no significant dependence on shunt. The limits of agreement were then +/- 16% shunt overall (+/- 13% within patients). When SaO2 was used instead of SpO2, the limits were +/- 11% (+/- 8% within patients)

    Non-invasive estimation of venous admixture: validation of a new formula

    No full text
    We have developed a computer program that estimates venous admixture (intra-pulmonary shunt) from four measurements: haemoglobin concentration, end-tidal carbon dioxide tension (PE'CO2), fractional inspired oxygen concentration (FIO2) and pulse oximetry (SpO2). The formula was tested on patients in an intensive therapy unit by using it to estimate shunt while it was measured simultaneously by a standard, invasive method. A total of 101 measurements were made in 29 patients. After correcting the systematic errors in the assumed differences between PE'CO2 and arterial PCO2, and between SpO2 and co-oximetrically measured SaO2, and correcting for a trend in the arteriovenous oxygen concentration difference (C(a-v))2) with shunt, the bias of the non-invasive minus invasive shunt differences was negligible, with no significant dependence on shunt. The limits of agreement were then +/- 16% shunt overall (+/- 13% within patients). When SaO2 was used instead of SpO2, the limits were +/- 11% (+/- 8% within patients)
    corecore