1,358 research outputs found
High efficiency thermionic converter studies
Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion
DIRECT ESTIMATION OF ABOVEGROUND FOREST PRODUCTIVITY THROUGH HYPERSPECTRAL REMOTE SENSING OF CANOPY NITROGEN
The concentration of nitrogen in foliage has been related to rates of net photosynthesis across a wide range of plant species and functional groups and thus represents a simple and biologically meaningful link between terrestrial cycles of carbon and nitrogen. Although foliar N is used by ecosystem models to predict rates of leaf‐level photosynthesis, it has rarely been examined as a direct scalar to stand‐level carbon gain. Establishment of such relationships would greatly simplify the nature of forest C and N linkages, enhancing our ability to derive estimates of forest productivity at landscape to regional scales. Here, we report on a highly predictive relationship between whole‐canopy nitrogen concentration and aboveground forest productivity in diverse forested stands of varying age and species composition across the 360 000‐ha White Mountain National Forest, New Hampshire, USA. We also demonstrate that hyperspectral remote sensing can be used to estimate foliar N concentration, and hence forest production across a large number of contiguous images. Together these data suggest that canopy‐level N concentration is an important correlate of productivity in these forested systems, and that imaging spectrometry of canopy N can provide direct estimates of forest productivity across large landscapes
PATHS in Context: User Characteristics and the Construction of Cultural Heritage Narratives
There is ample evidence of the influence of individual differences on information-seeking behaviours. Trailways and paths are increasingly important objects to support internet navigation. The EU-funded PATHS (Personalised Access to Cultural Heritage) project is investigating ways of assisting users with exploring a large collection of cultural heritage material taken from Europeana, the European aggregator for museums, archives, libraries, and galleries. A prototype system has been developed that includes innovative functionality for exploring the collection based on Google map-style interfaces, data-driven taxonomies, and supporting the manual creation of guided tours or paths along with the use of personalised (and nonpersonalised) recommendations to promote information discovery. After analysing the paths created by participants during an extended user evaluation, this paper discusses the effect of individual differences on path creation and characteristics
Automatic correction of hand pointing in stereoscopic depth
In order to examine whether stereoscopic depth information could drive fast automatic correction of hand pointing, an experiment was designed in a 3D visual environment in which participants were asked to point to a target at different stereoscopic depths as quickly and accurately as possible within a limited time window (≤300 ms). The experiment consisted of two tasks: "depthGO" in which participants were asked to point to the new target position if the target jumped, and "depthSTOP" in which participants were instructed to abort their ongoing movements after the target jumped. The depth jump was designed to occur in 20% of the trials in both tasks. Results showed that fast automatic correction of hand movements could be driven by stereoscopic depth to occur in as early as 190 ms.This work was supported by the Grants from the National Natural Science Foundation of China (60970062 and 61173116) and the Doctoral Fund of Ministry of Education of China (20110072110014)
Research Opportunities in Service Process Design
This paper presents an overview of the new issues and research opportunities related to four service operations design topics—the design of retail and e-tail service processes, design of service processes involving waiting lines and workforce staffing, service design for manufacturing, and re-engineering service processes. All four topics are motivated by new technologies (particularly web-based technologies) and require a multi-disciplinary approach to research. For each topic, the paper presents an overview of the topic, the relevant frameworks, and a discussion of the research opportunities
Spacelike distance from discrete causal order
Any discrete approach to quantum gravity must provide some prescription as to
how to deduce continuum properties from the discrete substructure. In the
causal set approach it is straightforward to deduce timelike distances, but
surprisingly difficult to extract spacelike distances, because of the unique
combination of discreteness with local Lorentz invariance in that approach. We
propose a number of methods to overcome this difficulty, one of which
reproduces the spatial distance between two points in a finite region of
Minkowski space. We provide numerical evidence that this definition can be used
to define a `spatial nearest neighbor' relation on a causal set, and conjecture
that this can be exploited to define the length of `continuous curves' in
causal sets which are approximated by curved spacetime. This provides evidence
in support of the ``Hauptvermutung'' of causal sets.Comment: 32 pages, 16 figures, revtex4; journal versio
A New Monte Carlo Method for Time-Dependent Neutrino Radiation Transport
Monte Carlo approaches to radiation transport have several attractive properties compared to deterministic
methods. These include simplicity of implementation, high accuracy, and good parallel scaling. Moreover,
Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial
dimensions, which makes them particularly interesting in modeling complex multi-dimensional astrophysical
phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for
modeling neutrino transport in core-collapse supernovae. We generalize the implicit Monte Carlo photon transport
scheme of Fleck & Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-,
and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that,
similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with
explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant
speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent,
implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents an attractive approach for use in
neutrino radiation-hydrodynamics simulations of core-collapse supernovae. Our velocity-dependent scheme
can easily be adapted to photon transport
Properties of the Volume Operator in Loop Quantum Gravity II: Detailed Presentation
The properties of the Volume operator in Loop Quantum Gravity, as constructed
by Ashtekar and Lewandowski, are analyzed for the first time at generic
vertices of valence greater than four. The present analysis benefits from the
general simplified formula for matrix elements of the Volume operator derived
in gr-qc/0405060, making it feasible to implement it on a computer as a matrix
which is then diagonalized numerically. The resulting eigenvalues serve as a
database to investigate the spectral properties of the volume operator.
Analytical results on the spectrum at 4-valent vertices are included. This is a
companion paper to arXiv:0706.0469, providing details of the analysis presented
there.Comment: Companion to arXiv:0706.0469. Version as published in CQG in 2008.
More compact presentation. Sign factor combinatorics now much better
understood in context of oriented matroids, see arXiv:1003.2348, where also
important remarks given regarding sigma configurations. Subsequent
computations revealed some minor errors, which do not change qualitative
results but modify some numbers presented her
Stability of general-relativistic accretion disks
Self-gravitating relativistic disks around black holes can form as transient
structures in a number of astrophysical scenarios such as binary neutron star
and black hole-neutron star coalescences, as well as the core-collapse of
massive stars. We explore the stability of such disks against runaway and
non-axisymmetric instabilities using three-dimensional hydrodynamics
simulations in full general relativity using the THOR code. We model the disk
matter using the ideal fluid approximation with a -law equation of
state with . We explore three disk models around non-rotating black
holes with disk-to-black hole mass ratios of 0.24, 0.17 and 0.11. Due to metric
blending in our initial data, all of our initial models contain an initial
axisymmetric perturbation which induces radial disk oscillations. Despite these
oscillations, our models do not develop the runaway instability during the
first several orbital periods. Instead, all of the models develop unstable
non-axisymmetric modes on a dynamical timescale. We observe two distinct types
of instabilities: the Papaloizou-Pringle and the so-called intermediate type
instabilities. The development of the non-axisymmetric mode with azimuthal
number m = 1 is accompanied by an outspiraling motion of the black hole, which
significantly amplifies the growth rate of the m = 1 mode in some cases.
Overall, our simulations show that the properties of the unstable
non-axisymmetric modes in our disk models are qualitatively similar to those in
Newtonian theory.Comment: 30 pages, 21 figure
- …
