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DIRECT ESTIMATION OF ABOVEGROUND FOREST PRODUCTIVITY
THROUGH HYPERSPECTRAL REMOTE SENSING OF CANOPY NITROGEN

MARIE-LOUISE SMITH,1,3 SCOTT V. OLLINGER,2 MARY E. MARTIN,2 JOHN D. ABER,2

RICHARD A. HALLETT,1 AND CHRISTINE L. GOODALE2

1USDA Forest Service, Northeastern Research Station, Durham, New Hampshire 03824 USA
2Complex Systems Research Center, University of New Hampshire, Durham, New Hampshire 03824 USA

Abstract. The concentration of nitrogen in foliage has been related to rates of net
photosynthesis across a wide range of plant species and functional groups and thus rep-
resents a simple and biologically meaningful link between terrestrial cycles of carbon and
nitrogen. Although foliar N is used by ecosystem models to predict rates of leaf-level
photosynthesis, it has rarely been examined as a direct scalar to stand-level carbon gain.
Establishment of such relationships would greatly simplify the nature of forest C and N
linkages, enhancing our ability to derive estimates of forest productivity at landscape to
regional scales. Here, we report on a highly predictive relationship between whole-canopy
nitrogen concentration and aboveground forest productivity in diverse forested stands of
varying age and species composition across the 360 000-ha White Mountain National Forest,
New Hampshire, USA. We also demonstrate that hyperspectral remote sensing can be used
to estimate foliar N concentration, and hence forest production across a large number of
contiguous images. Together these data suggest that canopy-level N concentration is an
important correlate of productivity in these forested systems, and that imaging spectrometry
of canopy N can provide direct estimates of forest productivity across large landscapes.

Key words: foliar chemistry; forest C and N linkages; forest canopy-level N concentration; forest
productivity; nitrogen; remote sensing, hyperspectral, AVIRIS; White Mountain National Forest, New
Hampshire, USA.

INTRODUCTION

The identification of temperate forests as potentially
important sinks for atmospheric CO2 (Houghton et al.
1999, Battle et al. 2000) has made estimation of forest
biomass production a critical component of global-
change forecasting. Despite this, obtaining accurate,
spatially explicit estimates of forest growth rates over
large areas is an exceedingly difficult task due to fine-
scale variation resulting from natural environmental
heterogeneity overlain by complex patterns of human
land use (Fung 1997, Schimel et al. 1997, Scurlock et
al. 1999).

A number of field studies across diverse biomes have
documented strong linkages among foliar chemistry,
particularly nitrogen concentration on a mass basis, and
rates of net photosynthesis (Field and Mooney 1986,
Reich et al. 1999a) and soil N availability (Pastor et
al. 1984, Yin 1992, Scott and Binkley 1997, Ollinger
et al. 2002). These results are indicative of the tightly
coupled nature of C and N dynamics in N-limited sys-
tems (Aber et al. 1991, Reich et al. 1997) and suggest
that foliar N concentration could provide a useful in-
dicator of ecosystem productivity, and one that could
be used to capture fine-scale variation in this process,
if a method were available to measure the N content

Manuscript received 1 September 2000; revised 13 July 2001;
accepted 17 December 2001.

3 E-mail: marielouisesmith@fs.fed.us

of foliage with high spatial resolution over large areas.
Despite this potential, such relationships have rarely
been investigated. A number of studies have demon-
strated relationships between foliar N content and for-
est productivity among a number of species, primarily
coniferous (Van Cleve et al. 1983, Comeau and Kim-
mins 1986, Matson et al. 1994, Bauer et al. 1997), but
no widely acknowledged pattern of whole-canopy fo-
liar chemistry vs. metrics of forest production have
emerged.

Similarly, the remote sensing of foliar chemistry has
been generally restricted to small experimental areas.
While the use of high-spectral-resolution reflectance
methods for the direct measurement of nitrogen, lignin,
cellulose, and other chemical constituents of foliage
has become an accepted laboratory technique (e.g.,
Hallett et al. 1997, Martin and Aber 1997, Gillon et al.
1999), general applications of high-spectral-resolution
remote sensing to the measurement of whole-canopy
chemistry have been limited (Wessman et al. 1988,
Matson et al. 1994, Zagolski et al. 1996, Martin and
Aber 1997). Application of a single calibration equa-
tion across multiple contiguous images covering a
large, forested landscape has not been achieved.

Here we present the first direct estimates of forest
productivity across a large, complex forested landscape
developed by estimating whole-canopy foliar N con-
centrations from high-resolution imaging spectrome-
try. These estimates are based upon a strong three-way
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FIG. 1. Location of White Mountain National Forest, New
Hampshire, USA, and the Bartlett Experimental Forest, Bart-
lett, New Hampshire, USA.

relationship among measured canopy N concentration
measured wood and foliar production, and the remote-
sensing signals for a diverse and spatially extensive set
of field sites.

METHODS

Study area

Our research was conducted in the White Mountain
National Forest (WMNF), New Hampshire, USA (Fig.
1). The WMNF is a 364 485-ha heavily forested and
mountainous region ranging from 200 m to more than
1400 m in elevation. Because of its wide elevational
and climatic range, the WMNF includes a variety of
vegetation and site types representative of those present
across most of the northeastern United States. These
include oak–pine-dominated stands in valley bottoms
on lacustrine and glacio-fluvial substrates, northern-
hardwood- and mixed-conifer-dominated mid-slopes
on basal and ablational tills, spruce–fir forest types on
upper mountain slopes, and alpine tundra mountain-
tops. Soils are mostly coarse textured spodosols or in-
ceptisols formed on glacially deposited tills. Sandy out-
wash is common in valley bottoms and shallow bedrock
histosols may be found on upper mountain slopes. The
climate of the White Mountains is characterized by a
relatively short growing season (frost-free period of
;120–140 d) and long, cold winters. Air temperatures
average 2128C and 198C in January and July, respec-
tively. Precipitation is generally evenly distributed
throughout the year and averages 120–140 cm, with
about one third in the form of snow (Federer et al.
1990).

This study examined relationships among forest pro-
ductivity, canopy biomass and leaf-area index (LAI),
and foliar nitrogen content and concentration in diverse
forested stands across the WMNF. In addition, we also
examined forest canopy N concentration in relation to
canopy-level spectral response as measured by a high-
altitude airborne imaging spectrometer to determine the
potential for remote estimation across a large forested
landscape. All stands were long-term forest growth in-
ventory plots maintained by the USDA Forest Service.
Forty-eight plots were located at the 1025-ha Bartlett
Experimental Forest (BEF), Bartlett, New Hampshire
(Fig. 1) and 37 plots, part of the USDA Forest Service
Northeastern Forest Inventory and Analysis (FIA) plot
network, were widely distributed across the White
Mountain National Forest, for a total of 85 plots. Plots
represent a broad range of species composition and
successional status. Species represented include Amer-
ican beech (Fagus grandifolia Ehrh.), sugar maple
(Acer saccharum Marsh.), yellow birch (Betula al-
leghaniensis Britt.), red maple (Acer rubrum L.), white
ash (Fraxinus americana L.), red oak (Quercus rubra
L.), pin cherry (Prunus pennsylvanica L.), paper birch
(Betula papyrifera Marsh.), red spruce (Picea rubens
Sarg.), balsam fir (Abies balsamea (L.) Miller), eastern
hemlock (Tsuga canadensis (L.) Carr.), and eastern
white pine (Pinus strobus L.). Most stands contained
mixtures of two or more species. Plot elevations range
from roughly 300–800 m.

Field data collection and analysis

All 85 forest stands were sampled for leaf-level and
whole-canopy nitrogen concentration for remote-sens-
ing image calibration. Fifty-six of these stands were
sampled for aboveground woody biomass production
(wood production) and 18 of these were also measured
for foliar biomass production and leaf-area index (Table
1).

Forest productivity.—Wood biomass was estimated
by measurements of stem diameter for all trees greater
than 5 cm diameter at breast height (dbh), and con-
verted to biomass values with previously derived al-
lometric equations for the species included in our study.
We only used equations that were developed in the
northeastern region and that included algorithms for
both stem and branch biomass (Tritton and Hornbeck
1981, Hocker and Early 1983). Wood biomass (in
grams per square meter) for each plot was calculated
by summing individual tree values over the entire plot
and dividing by the plot area. Plot-level wood produc-
tion (in grams per square meter per year) was calculated
as the difference between woody biomass in the most
recent and previous inventory, divided by the time in-
terval over which they were sampled.

For all 56 plots used for wood production measure-
ment, the most recent biomass inventory was conducted
by us in 1998. For previous measurements, we made
use of data collected by several USDA Forest Service
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TABLE 1. Results of field data collection from sample plots in 85 forest stands located across
the White Mountain National Forest, New Hampshire, USA.

Plot

Loca-
tion† Main species

Productivity
(g·m22·yr21)

Wood
Litter-

fall Total LAI

Canopy
N

(g/100 g)

BEF
BEF
BEF
BEF
BEF
BEF
FIA
FIA
FIA
FIA

Hemlock
Hemlock
Hemlock
Hemlock
Hemlock–Red spruce
Hemlock–Beech
Hemlock–Beech–Yellow birch
Hemlock–Yellow birch–Beech
Hemlock–Red maple
Hemlock–Red maple

238
226
303
294
248
357
301
···
···
···

···
176
···
···

149
···
···
···
···
···

···
402
···
···

397
···
···
···
···
···

···
3.09

···
···

2.78
···
···
···
···
···

1.20
1.20
1.28
1.35
1.09
1.69
1.73
1.77
1.58
1.70

BEF
BEF
BEF
BEF
BEF
FIA
FIA
FIA
BEF
BEF
BEF

Red spruce
Red spruce
Red spruce
Red spruce
Red spruce
Red spruce–Balsam fir
Red spruce–Balsam fir–Red maple
Red spruce–Hemlock
Red spruce–Paper birch
White pine–Hardwood
White pine–Hardwood

66
165
229
217
252
···

284
187
237
286
348

54
59
51
70
···
···
···
···

186
256
267

120
224
280
287
···
···
···
···

423
542
615

1.73
1.82
1.80
1.90

···
···
···
···

2.58
3.46
3.61

0.88
1.11
1.15
1.17
1.21
1.51
1.46
1.22
1.26
1.73
1.74

BEF
BEF
BEF
BEF
BEF
BEF
BEF
BEF
FIA
FIA
BEF
BEF
BEF
FIA
FIA

Beech
Beech
Beech
Beech
Beech
Beech
Beech
Beech–Hemlock
Beech–Paper birch
Beech–Paper birch–Red maple
Beech–Red maple
Beech–Red oak
Beech–Red oak
Beech–Sugar maple
Beech–Sugar maple

341
421
400
416
462
470
488
304
306
452
386
445
404
···
···

190
···
···

239
···
···
···
···
···
···
···
···

191
···
···

531
···
···

655
···
···
···
···
···
···
···
···

595
···
···

3.04
···
···

3.49
···
···
···
···
···
···
···
···

3.33
···
···

1.87
2.08
2.15
2.15
2.21
2.21
2.48
1.61
1.90
2.39
2.12
2.05
2.14
2.23
2.34

FIA
FIA
BEF
BEF
FIA
FIA
FIA
FIA
FIA

Paper birch–Balsam fir
Paper birch–Balsam fir–Red spruce
Paper birch–Beech
Paper birch–Beech
Paper birch–Beech
Paper birch–Red maple
Paper birch–Striped maple
Paper birch–Sugar maple
Paper birch–Yellow birch

···
···

502
501
···
···
···
···
···

···
···
···

251
···
···
···
···
···

···
···
···

752
···
···
···
···
···

···
···
···

3.39
···
···
···
···
···

1.77
1.66
2.26
2.34
1.56
1.91
2.10
2.28
1.76

FIA
FIA
BEF
BEF
FIA
FIA
FIA
FIA
FIA

Yellow birch–Balsam fir–Red spruce
Yellow birch–Red spruce–Balsam fir
Yellow birch–Beech
Yellow birch–Beech
Yellow birch–Paper birch
Yellow birch–Paper birch–Beech
Yellow birch–Red spruce
Yellow birch–Sugar maple
Yellow birch–Sugar maple

···
···

319
465
···
···
···
···
···

···
···
···
···
···
···
···
···
···

···
···
···
···
···
···
···
···
···

···
···
···
···
···
···
···
···
···

1.70
1.84
1.98
2.39
2.24
2.27
1.51
2.18
2.24

BEF
BEF
FIA
BEF
BEF
FIA
FIA
BEF
BEF
BEF
FIA

Red maple
Red maple
Red maple–Beech
Red maple–Beech
Red maple–Beech
Red maple–Beech
Red maple–Beech
Red maple–Paper birch
Red maple–Paper birch
Red maple–White pine
Red maple–Yellow birch

360
348
320
375
328
···

373
331
286
401
···

···
···
···

228
···
···
···
···
···
···
···

···
···
···

603
···
···
···
···
···
···
···

···
···
···

3.35
···
···
···
···
···
···
···

1.99
2.07
1.85
1.86
1.91
1.96
2.36
1.67
1.70
1.96
2.03
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TABLE 1. Continued.

Plot

Loca-
tion† Main species

Productivity
(g·m22·yr21)

Wood
Litter-

fall Total LAI

Canopy
N

(g/100 g)

FIA
FIA
FIA
FIA

Sugar maple
Sugar maple–Beech
Sugar maple–Beech
Sugar maple–Beech

···
260
260
···

···
236
···
···

···
496
···
···

···
3.58

···
···

2.08
1.70
1.90
1.91

BEF
BEF
BEF
BEF
FIA
BEF
BEF
BEF
FIA
FIA
FIA
BEF
FIA
FIA
FIA
FIA

Sugar maple–Beech
Sugar maple–Beech
Sugar maple–Beech
Sugar maple–Beech
Sugar maple–Beech
Sugar maple–Beech
Sugar maple–Beech
Sugar maple–Beech
Sugar maple–Beech
Sugar maple–Beech
Sugar maple–Beech–Red maple
Sugar maple–White ash
Sugar maple–White ash
Sugar maple–White ash
Sugar maple–Yellow birch
Sugar maple–Yellow birch–Beech

435
396
368
446
···

462
424
481
354
488
291
383
···
···
···
···

···
···

197
···
···

213
···
···
···
···
···

224
···
···
···
···

···
···

565
···
···

675
···
···
···
···
···

607
···
···
···
···

···
···

3.52
···
···

3.34
···
···
···
···
···

3.47
···
···
···
···

1.98
1.98
1.99
2.03
2.10
2.12
2.18
2.21
2.29
2.31
1.82
2.01
2.17
2.20
2.16
2.02

Notes: All 85 forest stands were sampled for leaf-level and whole-canopy nitrogen concen-
tration, measured as grams of N per 100 grams foliar biomass; 56 stands were sampled for
aboveground wood biomass production (wood), and 18 of those stands were also measured for
foliar biomass production (Litterfall) and leaf-area index (LAI).

† Plot key: BEF 5 plot located at the Bartlett Experimental Forest, Bartlett, New Hampshire,
USA; FIA 5 plot part of USDA Forest Service Forest Inventory and Analysis plot network
located across the White Mountain National Forest, New Hampshire, USA.

forest inventory programs. At the BEF, all plots were
previously measured in 1991–1992 as part of a periodic
survey (Leak and Smith 1996). FIA plots used in this
study were last measured in 1980 as part of the New
Hampshire statewide survey. These plots are no longer
part of the current FIA plot base in New Hampshire,
and had not been remeasured until our 1998 survey.

BEF and FIA plots differed in both plot size and in
inventory approach. Plots located at the BEF were 0.1
ha in size and FIA plots were 0.08 ha in size. BEF
plots used in this study were originally established in
1931–1932, FIA plots were variously established be-
fore 1959. We chose to adopt the plot size and follow
the measurement protocols for each plot type in order
to make use of data collected in previous inventories
for calculation of biomass increment.

Periodic growth inventory at the BEF was based on
dbh measurement in each plot of all standing live stems
.3.8-cm dbh (1.5 inches in original dbh units) mea-
sured in 2.54-cm (1-inch) size classes. For example,
the smallest size class, 5 cm (2 inches), includes all
stems with dbh between 3.8 cm (1.5 inches) and 6.4
cm (2.5 inches). Data were recorded as a tally by spe-
cies and size class. Tree mortality was included as a
component of annual biomass increment in our remea-
surement and was estimated for BEF plots based on
difference in number of live and dead stems by species
and size class between inventory periods (1991, 1998)
after accounting for growth of stems into larger size

classes. This method is similar to that described by
Clark et al. (2001) as the ‘‘Approach 2’’ strategy for
field estimation of forest production.

FIA growth inventory was based on dbh measure-
ment to the nearest 0.1 inch of each uniquely identified
tree (numbered with metal tags and referenced by dis-
tance and azimuth from the plot center) (Hansen et al.
1992). For remeasurement of FIA plots, we relocated
and measured dbh for each tagged tree, living or dead,
from the previous inventory, as well as the dbh of stem
in-growth during the intervening period. In a very few
cases certain individual trees from the previous inven-
tory could not be relocated; these were still included
in the biomass increment calculation but at their di-
ameter from the 1980 inventory. This method of car-
rying dead trees forward with zero growth prevents
mortality from causing a downward bias in growth es-
timates. The individual tree remeasurement method is
described by Clark et al. (2001) as the ‘‘Approach 1’’
strategy for field estimation of forest production.

Foliar biomass production was estimated on a subset
of 18 plots (shown in Table 1) by collection of leaf
litterfall. Eight litter baskets (0.23 m2) were randomly
placed in selected plots during the late summer of 1996.
Litter was collected every two to three weeks in the
fall, once in the spring, and once in late summer of
1997; these samples were composited into a single sam-
ple per litterbasket prior to sorting. Litter from each
basket was air dried and sorted into leaf and non-leaf
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litter. Leaf litter was sorted by species and then oven
dried at 708C for 48 h and weighed. Annual foliar pro-
duction (in grams per square meter per year) was cal-
culated as the sum of litter-basket foliar mass divided
by litter-basket area.

Aboveground net primary productivity (ANPP, in
grams per square meter per year) was calculated as the
sum of wood production and annual litterfall biomass
production for the 18 plots where both variables were
measured.

Although wood production measurements would ide-
ally have been collected on all 56 productivity-mea-
surement plots over similar time intervals, and foliar
production over the time intervals and number of plots
that matched those of wood production measurements,
we were constrained by the availability of historical
woody biomass data and the logistical difficulties of
frequent litterfall sampling in remote locations.

Canopy foliar mass (in grams per square meter) was
estimated by combining leaf litterfall data with esti-
mates of leaf retention time. Because broad-leaved de-
ciduous trees shed all of their leaves each year (leaf
retention time 5 1 yr), foliar mass and foliar production
are equivalent. For needle-leaved evergreens, foliar
mass was calculated by multiplying annual litterfall
mass by species-specific average leaf longevity as tak-
en from the literature to account for leaves retained for
more than one season. We recognize that the ratio of
leaf production to litterfall in evergreen-dominated for-
ests is not always equivalent from year to year and so
measurements based on a single year’s litterfall may
underestimate or overestimate long-term mean leaf pro-
duction (Gower et al. 1999, Magill et al. 2000).

Single-sided leaf area was estimated as the product
of species dry foliar mass from litterfall collection and
specific leaf area (SLA). SLA was calculated as the
inverse of measured leaf mass per unit area (LMA)
determined from green-leaf sampling (see Canopy
structure and nitrogen content, below). Leaf-area index
(LAI) was calculated as the mean ratio of leaf area and
litter-basket ground area (in square meters per square
meter).

Canopy structure and nitrogen content.—For deter-
mination of growing-season foliar chemistry at each
plot, all dominant and co-dominant species were iden-
tified, and between two and seven trees per species were
selected for green-leaf collection. Leaves were col-
lected by shotgun sampling of small branches from
several heights in the canopy. Samples were collected
in midsummer to coincide with the peak of the growing
season and with overflight of NASA’s Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS). Samples
were oven dried at 708C for 48 h and then ground with
a Wiley mill to pass through a 1-mm mesh screen. A
benchtop visible and near-infrared spectrophotometer
(NIRSystems model 6500 [Foss NIRS Systems, Silver
Spring, Maryland, USA]) was used to determine leaf-
level foliar N concentrations of oven-dried, ground fo-

liage according to methods described by Bolster et al.
(1996).

Plot-level whole-canopy nitrogen concentration
(grams of N per 100 g oven-dried foliar biomass) was
calculated as the mean of foliar N concentration for
individual species in each stand, weighted by fraction
of canopy foliar mass per species. Each species con-
tribution to the total mass of the canopy was determined
by combining its proportional leaf area with LMA mea-
surements.

Determination of species’ leaf area fraction in each
plot was achieved using a camera-based point quadrat
sampling technique in which a 35-mm camera with a
135-mm telephoto lens served as the sampling device.
The focal plane of the lens was calibrated to distance
in meters to allow use as a range finder, and a grid of
15 points was marked on the camera’s viewing screen.
In each sample plot the camera, mounted on 1-m-tall
tripod, was directed upward towards the canopy and
leveled. The species and height of the lowest leaf cov-
ering each grid point was determined by focusing the
lens and recording the calibrated distance. In each sam-
ple plot, 15 grid-point observations were taken at nine
sample points for a total of 135 observations per plot.
Although not an accurate estimator of total leaf area,
this method has been demonstrated to be an accurate
means of determining the relative distribution or frac-
tion of leaf area by height (MacArthur and Horn 1969,
Aber 1979a, b) and by species (Parker et al. 1989) in
a forested canopy.

For determination of species LMA, additional leaf
samples were collected from the upper canopy for each
dominant or co-dominant species at the time of mid-
summer green-leaf sampling. Samples were sealed in
resealable polyethylene bags for transportation. Single-
sided leaf area was measured by two methods. For
broad-leaved deciduous species, disks of known area
(2.035 cm2) were taken from each leaf by means of a
sharpened metal punch. Five to seven disks per leaf
were taken from 3–5 leaves per species per sample.
For needle-leaved evergreens, projected leaf area was
determined by optical planimetry. Fifty to eighty nee-
dles per sample were scanned using a high-resolution
black and white optical scanner, and image-processing
software was used to determine projected leaf area. All
leaf samples were dried at 708C for 48 h and then
weighed to the nearest 0.1 mg to allow determination
of leaf mass per unit area.

Canopy composition as a fraction of species by leaf
area was converted to fraction by mass using measured
LMA values for each species. The accuracy of the cam-
era point method in estimation of whole-canopy N con-
centration was validated against estimates derived from
canopy leaf area and mass obtained directly from leaf
litterfall collection (Smith and Martin 2001). The two
methods produced nearly identical estimates of mass-
based N concentration among sample plots (R2 5 0.98,
P , 0.000; data not shown).
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Statistical analysis.—Statistical analyses of plot-lev-
el field data were performed using SYSTAT 7.0 (SPSS
1997). Linear regression analyses were used to examine
relationships among productivity (wood production
and ANPP), canopy nitrogen, foliar mass, and LAI.
Although foliar area and mass-based variables and
ANPP are not independent, we include analyses among
these variables for illustrative purposes, and for com-
parison with regressions among these variables and
wood production, which are independent. The coeffi-
cient of determination (R2), residual plots, and regres-
sion P values (P , 0.05) were used to identify the best
regression models. Coincident regression analyses and
equal-slopes analyses were used to test for slope and
intercept differences among regression relationships
(Klienbaum et al. 1988).

Remote-sensing data.—Hyperspectral remote-sens-
ing data were obtained for the White Mountain region
using NASA’s Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS). Flying aboard an ER-2 aircraft at
an altitude of 20 000 m, AVIRIS measures upwelling
radiance from the solar reflected spectrum in 224 con-
tiguous channels from 0.4 to 2.4 mm with a spectral
resolution of 0.01 mm (Green et al. 1998). On 12 Au-
gust 1997, under nearly cloud-free conditions, fifty-six
contiguous 10 3 10 km scenes with a spatial resolution
of ;17 m were obtained for the entire White Mountain
region. Foliar chemistry data were collected from all
sample sites within three days of the AVIRIS overflight.
Sample plots were distributed across 36 of 56 scenes
that comprise the 1997 WMNF AVIRIS data set.

The atmosphere plays a complex and often con-
founding role in optical remote sensing, dramatically
altering the spectral nature of radiation reaching the
sensor (Schowengerdt 1997). Without a robust means
of transforming at-sensor radiance to canopy reflec-
tance, accurate retrieval of canopy biochemical prop-
erties is not possible. In this study AVIRIS at-sensor
radiance data were transformed to apparent surface re-
flectance using the atmosphere removal program
(ATREM) of Gao et al. (1992, 1993). ATREM was
designed specifically for retrieving scaled surface re-
flectance from spectral imaging data collected by the
AVIRIS sensor. ATREM uses a radiative transfer mod-
el, based on the MODTRAN 5S code (Tanre et al.
1990), to calculate atmospheric transmittance of seven
gases (water vapor, ozone, oxygen, carbon monoxide,
carbon dioxide, methane, and nitrous oxide). Atmo-
spheric attenuation and scattering effects of these gases
are then removed from the images on a pixel-by-pixel
basis.

After atmospheric correction, AVIRIS images were
resampled to 20-m resolution and then geometrically
registered to a geo-coded SPOT panchromatic coverage
of the study area (Spot Image Corporation, Reston,
Virginia, USA). AVIRIS reflectance spectra for 2 3 2
pixel areas covering each sample plot were extracted
for spectral analysis. We examined relationships among

plot-level spectral response and canopy nitrogen con-
centration using a full-spectrum analytical method, par-
tial least squares (PLS) regression.

Prior to examination of correlations among spectral
data and whole-canopy N concentration using the full-
spectrum PLS method, plot-level reflectance spectra (r)
were transformed to absorbance (A), where

A 5 log (1/r)10 (1)

and a derivative transformation (approximated by finite
difference) was applied. According to Beer-Lambert,
the concentration of an absorber is directly proportional
to A where A is the product of molecular absorption,
the concentration of absorbers, and the path length of
irradiating energy (Murray and Williams 1987). The
derivative spectrum is simply a measure of the slope
of the spectral curve at every point, and results in a
spectrum in which peaks and valleys correspond with
inflection points in the absorbance spectra (thus aiding
in resolving overlapping spectral peaks) and from
which baseline offsets and low-frequency variation
(such as are caused in a remote-sensing context by
varying sun-sensor-target geometry) have been re-
moved or substantially minimized (Hrushcka 1987).
Myneni et al. (1995) demonstrated that in the case of
optically dense vegetation, such as that found in closed-
canopy forests, the spectral derivative with respect to
wavelength can be shown to be directly indicative of
the abundance and activity of absorbers in leaves.

PLS regression, a type of eigenvector analysis, was
used to relate AVIRIS spectral response to whole-can-
opy N concentration data for each sample stand. PLS
regression methods reduce full-spectrum data to a
smaller set of independent latent variables, or factors,
with the constituent concentration data used directly
during the spectral-decomposition process (Shenk and
Westerhaus 1991). As a result, full-spectrum wave-
length loadings for significant PLS factors (P # 0.05),
from which regression coefficients for each wavelength
are derived, are directly related to constituent concen-
tration and thus describe the spectral variation most
relevant to the modeling of variation in the chemical
data. Finite difference approximations of the derivative
transformation, both first and second order, were per-
formed iteratively during PLS regression analysis over
variable wavelength widths with the aim of maximizing
the squared multiple-correlation coefficient between
spectral data and whole-canopy N concentration (Mur-
ray and Williams 1987). Values of inflection points are
reported at the center point of the smoothed segment.

RESULTS AND DISCUSSION

Productivity, foliar chemistry, and canopy structure

Table 1 shows the results of all plot-level field mea-
surements. Aboveground net primary production
(ANPP) varied by a factor of 6 across study sites, rang-
ing from 120 to 615 g·m22·yr21 in needle-leaved ev-
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FIG. 2. Relationships among whole-canopy nitrogen con-
centration and aboveground productivity for broad-leaved de-
ciduous (open circles) and needle-leaved evergreen (open tri-
angles) forest types, White Mountains, New Hampshire,
USA. Relationships among canopy-level N concentration and
(a) ANPP and (b) wood production for the foliar production
data subset (n 5 18 stands) as well as (c) wood production
for the full wood production data set (n 5 56 stands).

ergreen dominated stands (n 5 9 stands) and from 496
to 752 g·m22·yr21 in broad-leaved deciduous-dominated
stands (n 5 9 stands). Aboveground wood production
ranged from 66 to 357 g·m22·yr21 in evergreen–domi-
nated stands (n 5 17) and from 260 to 502 g·m22·yr21

in deciduous-dominated stands (n 5 39 stands). Mean
and variance in growth rates among Bartlett Experi-
mental Forest (BEF; Bartlett, New Hampshire, USA)
and USDA Forest Service forest inventory and analysis
(FIA) plots for similar forest types were not signifi-
cantly different, suggesting that difference in both mea-
surement interval and inventory approach among plot
sets was not a substantial problem. Clark et al. (2001)
suggest that it is not measurement interval per se but
rather the failure to adequately account for mortality
over the interval that is the principal source of error
(i.e., underestimation of aboveground biomass) in long-
interval estimates of forest production.

Foliar production varied more than five-fold (51–267
g·m22·yr21), and comprised from 18% to 47% of ANPP.
Leaf-area index (LAI) ranged from 1.73 to 3.61. Foliar
production, LAI, and foliar mass all showed greater
variation within needle-leaved evergreen-dominated
stands than within broad-leaved deciduous-dominated
stands, and much of this could be related to variation
in leaf retention time.

Canopy N concentrations (grams of N per 100 g
foliar biomass) varied more than two-fold across all
sites, differing in both mean and range between func-
tional types. Canopy N ranged from 1.61 to 2.48%
among deciduous-dominated stands (n 5 64 stands,
mean 5 2.05%) and from 0.88% to 1.80% among ev-
ergreen-dominated stands (n 5 21, mean 5 1.33%).
Within deciduous-dominated stands, foliar N concen-
tration showed greater relative variation than did LAI
and foliar biomass, which varied little. Total canopy N
content (grams of N in the canopy per square meter of
ground surface area) varied more widely across sites
(1.00–9.62 g/m2) than did canopy N concentration,
largely reflecting variation in canopy biomass among
evergreen-dominated stands.

Across all sites and functional types, whole-canopy
foliar N concentration was the strongest overall pre-
dictor for both ANPP and wood production among the
variables we measured (Fig. 2, Table 2). Significant
linear relationships between productivity (ANPP and
wood production) and LAI, foliar mass, and canopy N
content were also found, but the trends differed across
functional types in both slope and intercept (Fig. 3,
Table 2). Among evergreen-dominated stands, ANPP
and wood production also showed strong linear cor-
relations with LAI, foliar biomass ( in grams per square
meter) and canopy N content (in grams per square me-
ter). Among deciduous types, ANPP and wood pro-
duction were well related to canopy N content, but were
poorly related to canopy mass and showed no rela-
tionship with LAI.

Comparison of relationships among canopy variables
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TABLE 2. Correlation coefficients and regression P values (in parentheses) among measures of aboveground forest pro-
ductivity and measured canopy variables.

Canopy variables

Aboveground net primary production
(g·m22·yr21)

All Evergreen Deciduous

Aboveground wood production
(g·m22·yr21)

All Evergreen Deciduous

N (g/100 g)
Full plot data set
Foliar production data set

···
0.88 (0.00)\

···
0.80 (0.01)¶

···
0.78 (0.01)¶

0.80 (0.00)†
0.89 (0.00)\

0.66 (0.00)‡
0.68 (0.04)¶

0.61 (0.00)§
0.86 (0.00)¶

N content (g/m2) ··· 0.85 (0.00)¶ 0.82 (0.00)¶ ··· 0.62 (0.01)¶ 0.55 (0.01)¶
LAI (m2/m2) ··· 0.87 (0.00)¶ NS¶ ··· 0.57 (0.01)¶ NS¶
Canopy mass (g/m2) ··· 0.85 (0.00)¶ 0.07 (NS)¶ ··· 0.53 (0.02)¶ NS¶

Notes: Correlations among wood production and canopy N concentration are presented for the full plot data set (n 5 56
stands), as well as correlations among measured canopy variables, ANPP, and wood production for the foliar production plot
subset (n 5 18 stands). NS 5 nonsignificant at P # 0.05.

† No. stands used in the measure of forest production 5 56.
‡ No. stands 5 17.
§ No. stands 5 39.
\ No. stands 5 18.
¶ No. stands 5 9.

FIG. 3. Relationships among forest productivity (aboveground net primary production [ANPP] and aboveground wood
production) and several measured canopy variables for broad-leaved deciduous (open circles) and needle-leaved evergreen
(open triangles) forest types, White Mountains, New Hampshire, USA.

and productivity between deciduous and evergreen
stands may reflect different patterns of resource allo-
cation between the two groups. Previous work has
shown that, at the leaf level, photosynthetic capacity
tends to be lower per unit foliar N for evergreen than
deciduous temperate forest species (Reich et al. 1995)
and is inversely correlated with leaf retention time
(Reich et al. 1999a). Similarly, at the canopy level in
single-species stands, Gower et al. (1993) showed an
inverse correlation between leaf retention time and pro-
duction efficiency, defined as ANPP per unit LAI. Our

data show similar patterns, although plot-level leaf re-
tention time is more difficult to characterize in the
mixed-species stands we examined. In addition, our
data showed interesting differences in relationships be-
tween canopy N and productivity when canopy N was
expressed as mass-based concentration vs. total N con-
tent. Although both relationships were strong within
functional types (and within evergreens represents the
strongest trend in our data set), the relationships for
canopy N content differed across functional groups
whereas the relationship for canopy N concentration
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did not (Figs. 2 and 3). Production per unit canopy N
content was significantly lower within evergreen-dom-
inated stands than within deciduous-dominated stands.
This likely reflects a trade-off in growth strategy where-
by evergreen species have lower leaf-level photosyn-
thetic capacity per unit foliar N than deciduous species
(Reich et al. 1995) that may be compensated by their
often-greater total foliar biomass.

Neither LAI nor canopy mass in this study were
strong linear correlates of productivity across forest
types. The use of LAI in particular as a robust linear
correlate and hence potential estimator of forest pro-
ductivity has been most effectively demonstrated with-
in single functional types or across large moisture gra-
dients where substantial variation in LAI can be ob-
served (e.g., Gower et al. 1992, Matson et al. 1994,
Fassnacht and Gower 1997). The comparison between
forest productivity and LAI in this study suggests that
once a certain level of canopy cover is reached (single-
sided LAI $ 3.0, in this study) variation in production
becomes less well related to LAI. This pattern has been
previously shown for both LAI and spectral vegetation
indices (SVIs) such as NDVI (normalized-difference
vegetation index, from which LAI is often derived in
a remote-sensing context) and stems from the fact that
as canopy area increases, the light-interception effi-
ciency of additional leaf layers decreases due to in-
creased self-shading (Gower et al. 1993, Reich et al.
1999b). The result is that relationships between growth
and LAI (and between LAI and SVIs) often become
saturated, typically at LAI values of between 3 and 5
depending on ecosystem type, above which these var-
iables become less tightly coupled (Reich et al. 1999b,
Turner et al. 1999). In some systems this is a minor
issue, but in closed-canopy forests, it can be an im-
portant consideration. In this study this was particularly
true among deciduous-dominated stands, which
showed relatively little variation in LAI, but consid-
erable, and related, variation in both foliar N and pro-
ductivity (ANPP and wood production).

Our data suggest that variation in growth in closed-
canopy deciduous forests is related more to variation
in physiological properties that reflect leaf-level pho-
tosynthetic capacity than to canopy properties such as
total foliar biomass or leaf area. That the relationships
between productivity and foliar N were consistent
across deciduous and coniferous forests is interesting
given their well-documented differences in leaf-level
photosynthetic efficiency (photosynthesis per unit fo-
liar N, Reich et al. 1992, 1995, Gower et al. 1993).
This suggests that differences in these and other as-
sociated leaf traits involve compensating trade-offs that
result in similar growth efficiencies at the stand level
(e.g., lower leaf-level growth rates among conifers al-
lowing longer leaf retention times, lower respiration
rates, and maintenance of greater canopy biomass) (Til-
man 1988, Reich et al. 1992). However, this explana-
tion requires that stand-level efficiency be defined per

unit leaf nitrogen (which is not necessarily intuitive),
or at least that leaf N concentration is correlated with
more appropriate efficiency indices (e.g., litterfall N as
suggested by Vitousek et al [1995]). Hence, we cannot
presently resolve why leaf-level N concentration
should scale with wood growth or ANPP more pre-
cisely than canopy N content (or other canopy prop-
erties). It is also unclear how generalizeable this re-
lationship may be across other forested regions.

Nevertheless, the challenge of applying LAI to es-
timation of production in closed-canopy forests, and in
particular at fine spatial scales or within regions where
moisture regimes and LAI are less variable, suggests
that methods for detecting canopy properties that relate
instead to the production efficiency of foliage would
represent an important addition to current capabilities.
Evidence from field studies in diverse biomes has
shown mass-based N concentration to scale positively
and at a high level of generality with photosynthetic
rate, growth, and productivity across many functional
types, at scales from individual leaves to forest stands
(Reich et al. 1992, 1995, 1999a). Evidence from light-
use efficiency modeling studies suggests that the ob-
served linear relationship between productivity and
fraction of absorbed photosynthetically active radiation
( fAPAR) is largely a function of the optimization of N
allocation within plant canopies (Haxeltine and Pren-
tice 1996, Medlyn 1998), and is particularly strong
when expressed on a leaf or canopy mass basis rather
than an area basis (see Goetz and Prince 1999). Mass-
based N concentration typically remains constant with
vertical canopy position (Ellsworth and Reich 1993,
O’Neill et al. 2002) and is reasonably stable over the
growing season for both deciduous and evergreen spe-
cies (i.e., post-leaf expansion to late summer) (Martin
1994, Bauer et al. 1997), making characterization
through field sampling and, potentially, remote sensing
relatively straightforward. The potential utility of a N-
based approach does not imply that production nec-
essarily be N limited. For example in systems where
growth may be limited by other nutrients (e.g., phos-
phorus), carbon and nitrogen cycles often remain cou-
pled through maintenance of conservative nutrient ra-
tios in plants and through the dependence of N cycling
on plant organic-matter production (e.g., Vitousek et
al. 1995).

Canopy chemistry and AVIRIS spectral response

Based on results from our field data, our analysis of
AVIRIS spectral data focused primarily on whole-can-
opy N concentration as the most straightforward and
general remote-sensing approach. Whole-canopy N
concentration was the strongest linear correlate of pro-
ductivity across the forest types we examined, and no
a priori knowledge of forest composition was required
for application of the empirical correlation with image
spectral data.

Correlation or calibration (Hruschka 1987) of AVIR-
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TABLE 3. Summary statistics for partial least squares (PLS) regression of canopy nitrogen
concentration (grams of N per 100 g foliar biomass) with AVIRIS spectral response within
and across AVIRIS scenes.

No.
AVIRIS
scenes†

PLS
factors Math‡ N§ R2 SECV\ CV¶

Mean N
concen-
tration Range

1 (BEF)
36

3
3

1, 4, 3
1, 4, 3

44
53

0.84
0.82

0.23
0.25

0.13
0.13

1.81
1.88

0.88–2.48
0.88–2.48

† Single-scene calibration is based on sample and spectral data from the Bartlett Experimental
Forest (BEF), New Hampshire, USA; multi-scene calibration is based on sample and spectral
data from 36 of 56 AVIRIS scenes across the White Mountain National Forest, New Hampshire,
USA.

‡ Mathematical transformation of spectral data, where the first number is the order of the
derivative function, the second is the segment length in data points over which the derivative
was taken, and the third the segment length over which the function was smoothed.

§ N 5 no. of plots.
\ SECV 5 Standard error of cross-validation, the square root of the mean square of the residuals

for n 2 1 degrees of freedom; it is calculated based on an iterative exclusion and prediction
of each sample.

¶ Coefficient of variation, ratio of SECV to the mean N concentration.

IS spectral response with measured whole-canopy N
concentration was undertaken at two spatial resolu-
tions. A single-scene calibration (10-km2 area) focused
on plot sample and spectral data from the BEF. A multi-
scene calibration included canopy N concentration and
spectral data distributed across 36 of 56 AVIRIS scenes
covering the White Mountain National Forest. For the
multi-scene calibration, field and spectral data from 32
of 44 sample plots from the BEF data set were excluded
in order to minimize spectral-calibration bias from any
one scene. Included BEF spectral data represent the
range in spectral response over the forest types sampled
and were chosen based on an objective population
structuring method that ranks an individual spectrum
based on Mahalanobis distance (H ) from an average
spectrum of the population (Shenk and Westerhaus
1991). Excluded samples were reserved as a validation
data set for multi-scene calibration.

Using full-spectrum PLS regression we obtained two
3-factor calibration equations, one single-scene and one
multi-scene equation, relating AVIRIS spectral re-
sponse to measured whole-canopy N concentration (Ta-
ble 3). Strong correlations among measured whole-can-
opy N concentration and transformed AVIRIS absor-
bance spectra were found both within (R2 5 0.84) and
across (R2 5 0.82) scenes and could be associated with
absorption features in both the visible and near infrared
spectrum as indicated by the magnitude of factor load-
ings associated with specific wavelength regions (Fig.
4). Important absorption features in the visible region
have direct association with photosynthetic pigments,
primarily broad chlorophyll absorption features cen-
tered near 490 nm and 680 nm (Curran 1989). Spectral
features at near infrared wavelengths centered at 1150
nm, 1510 nm, 1740 nm, and 2050 nm represent over-
tones of fundamental absorption characteristics of N-
H and C-H bonds at longer wavelengths that are as-
sociated with leaf proteins and which differ from those

of other major leaf components (Curran 1989, Barton
et al. 1992).

Nitrogen, which is typically a small percentage of
leaf biomass, has been repeatedly correlated in a num-
ber of empirical investigations of forest canopies with
absorbance over the spectral regions identified in this
study (e.g., Matson et al. 1994, Martin and Aber 1997,
White et al. 2000). Evidence from canopy modeling
and radiative-transfer studies suggests that leaf optical
properties (and thus foliar chemistry) are expressed
most strongly at the canopy level when canopies are
optically dense—that is, closed canopies of high LAI,
which are typical of many forested systems. As noted
previously, Myneni et al. (1995) were among the first
to describe the physical and theoretical basis for high
spectral-resolution remote sensing of canopy chemistry
in the case of optically dense vegetation. Recent evi-
dence from combined field data and radiative-transfer
modeling studies provide support for this conclusion.
For example, Asner (1998) in a combined field-data
and canopy-reflectance modeling study examined the
influence of varying LAI and LAD (leaf angle distri-
bution) on the translation of leaf-level information in-
cluding foliar chemistry (N, lignin, and cellulose) to
the canopy level for sites ranging from grasslands to
savannas to tropical woodlands. He found that leaf op-
tical properties, and hence leaf-level biochemistry,
could be represented in canopy reflectance in both the
visible and near-infrared (NIR) regions via the narrow-
band absorption features of derivative spectra. LAI and
leaf angle control the strength of this expression, which
varies by ecosystem type. In general he found that
closed canopies of high LAI and of generally horizontal
leaf inclination (characteristics of the temperate decid-
uous and mixed-conifer forests that are the subject of
this study) best allow the generally weak leaf-level
biochemical information, particularly in the NIR, to be
enhanced at the canopy scale via multiple scattering.
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FIG. 4. Results of partial least squares (PLS) regression
for 53 forest canopy nitrogen concentration calibration sam-
ples among 36 AVIRIS scenes. Latent variables (loadings) of
the first three significant PLS factors are plotted against wave-
length, excluding wavelength regions associated with strong
water-absorption features. Together these factors account for
82% of the variability in N concentration (Table 2), each
factor accounting for 53%, 23%, and 6% of the variability,
respectively. Important wavelength regions for prediction of
canopy N concentration are those in the visible range centered
near 0.49 mm and 0.68 mm associated with cholorphyll ab-
sorption features, and those in the near-infrared centered near
1.15 mm, 1.51 mm, 1.74 mm, and 2.05 mm associated with
protein and nitrogen absorption features.

Similarly, Gastellu-Etchegorry and Bruniquel-Pinel
(2001) used a combined leaf- and canopy-level radia-
tive-transfer modeling approach to assess the robust-
ness of spectrometric predictive equations for the es-
timation of the canopy chemistry of forested stands
when applied to scenes of varying structural charac-
teristics (percent cover, LAI). Predictive equations
were developed for lignin, cellulose, and proteins using
spectral absorbance features in the 1300–2400 nm re-
gion. For all chemical constituents, predictive equa-
tions performed well for forest canopies of percent cov-
er .48% and LAI .2.5. These equations yielded robust
predictions when applied to scenes of higher LAI or
greater tree cover, but the reliability of these equations

decreased strongly when applied to scenes of smaller
LAI or diminished tree cover (i.e., increasing under-
story variability).

In this study, results of PLS regression represent the
first successful derivation of a single calibration equa-
tion for the prediction of forest canopy-level N con-
centration across multiple hyperspectral images. Both
single- and multi-scene calibrations developed by this
method for these data fall well within the accuracy and
precision required for mapping variation in foliar N
necessary to distinguish between ecosystems in their
photosynthetic and, hence, productive potential (i.e.,
within 0.5% by dry mass as described by Schimel
[1995]). We attribute this success in particular to the
improved radiometric precision of the AVIRIS sensor
in conjunction with a careful, multi-step field data-to-
image calibration process (including pixel by pixel at-
mospheric correction), and to the use of the PLS re-
gression method for calibration-equation derivation.

The radiometric precision and accuracy of the AVIR-
IS sensor is very high and continues to improve from
year to year. A recent laboratory calibration and inflight
validation and sensitivity experiment (Green et al.
1999) demonstrated an absolute average agreement (ac-
curacy) of .96% across the spectrum between pre-
dicted and observed AVIRIS radiance for a known cal-
ibration target. The signal-to-noise ratio (SNR) of
AVIRIS is an equally important parameter of interest.
Calculated based on AVIRIS measurements of homog-
enous targets and using AVIRIS radiance data from
1987 as the baseline, Green et al. (1999) report AVIRIS
SNR of better than 1000 to 1 in the visible portion of
the spectrum, better than 600 to 1 in the 1000 nm
region, and approaching 450 to 1 in the 2000 nm spec-
tral region. This is in contrast to AVIRIS SNR in 1987
that was much less than 100 to 1 in most spectral re-
gions.

The advantage of PLS regression in multi-image cal-
ibration lies in its use of the full spectral coverage in
each factor rather than reliance on a few selected wave-
lengths (as in the more commonly used multiple linear
regression (MLR) calibration), and in the direct rela-
tionship between regression factors and the constituent
of interest rather than simply with the largest common
spectral variation (Kramer 1998). Thus, PLS regression
calibration is likely to be more robust with small cal-
ibration data sets and to variation in target composition,
illumination, and path length—factors that, when using
an MLR approach in remote spectroscopy contexts, of-
ten produce inconsistent calibration wavelength selec-
tion from sample set to sample set (see Grossman et
al. 1996, White et al. 2000).

Nitrogen concentration and fAPAR

A number of studies aimed at remote detection of
ecosystem productivity have focused on direct rela-
tionships between growth and the fraction of absorbed
photosynthetically active radiation (e.g., Monteith
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FIG. 5. Spatial distribution of (a) AVIRIS-predicted nitrogen concentrations (g N/100 g foliar biomass) for the White
Mountain National Forest, New Hampshire, USA (see inset of the state of New Hampshire) and (b) aboveground wood
production, as estimated from AVIRIS predicted whole-canopy N concentration.
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1972, Runyon et al. 1994, Prince and Goward 1995).
This approach is generally known as the light-use ef-
ficiency model (NPP 5 «fAPAR), where fAPAR is the frac-
tion of absorbed photosynthetically active radiation and
« is the light-use efficiency constant. Although this
method and the one we present in this paper appear to
bear little direct relationship, the development of the
two methods have a similar basis and are not neces-
sarily inconsistent. For example, Myneni et al. (1995)
used a radiative-transfer model to examine the func-
tional basis of linkages between SVIs, fAPAR, and
growth. They determined that in optically dense plant
canopies, common vegetation indices, insofar as they
approximate the spectral derivative, should reflect the
activity and abundance of light absorbers in the canopy,
which are largely a function of chlorophyll and other
nitrogen-based pigments. The link between fAPAR and
LAI, which has been used as a more intermediate scalar
in a number of subsequent analyses (e.g., Myneni et
al. 1997, Knyazikhin et al. 1999), assumes that the
content of absorbers in a plant canopy is more depen-
dent on the number of leaf layers present than on the
concentrations of absorbers within individual leaves.
While this approach has been successful in a number
of cases, and may be the most practical approach glob-
ally, our data suggest that closed-canopy deciduous for-
ests may vary their leaf-level physiology (i.e., N con-
centration) more than their total leaf area.

In addition, although a great deal of effort has gone
into estimating and interpreting light-use efficiency
constants for different biomes (see Gower et al. 1999),
considerable uncertainties still exist. Goetz and Prince
(1999) discussed the possibility that common evolu-
tionary constraints imposed on all plants should lead
towards convergence on a relatively narrow range of
«. Other authors have noted the wide range of measured
values (published values of « range from ;0.2 to over
3.5 g/MJ [Medlyn 1998]) and have devoted consider-
able attention to explaining this variation. Our data
raise the possibility that foliar N may play an important
role here, a notion that has previously been suggested
by a number of other investigators (e.g., Cannell et al.
1988, Wright et al. 1993). Because examining fAPAR and
canopy light-use efficiency were beyond the scope of
our study, we only speculate on the relationships among
these variables and leaf- and whole-canopy N.

AVIRIS estimation of whole canopy N concentration
and wood production

The statistical relationship derived from multi-scene
PLS regression described in Table 3 was used in con-
junction with AVIRIS data to produce a map of forest
canopy N concentration for the White Mountain Na-
tional Forest (Fig. 5a), and thus, using the relationship
in Fig. 2c, a map of wood production (Fig. 5b). The
same approach can be applied to Fig. 2a to map patterns
of ANPP. Wood production is presented here because
the data set upon which the wood-production regres-

sion is based is larger and because more independent
validation data were available for wood growth than
for ANPP. These variables scale linearly with one an-
other given that wood growth is the largest component
of ANPP and our field data showed wood and leaf
production to be strongly correlated (R2 5 0.55, data
in Table 1).

Image spatial patterns broadly reflect the distribution
of functional types. Broad-leaved deciduous species
dominate areas with foliar N concentration .1.9%,
needle-leaved evergreens dominate those below 1.3%,
and intermediate areas are of mixed-forest type. Fine-
scale spatial variation results from a variety of natural
and anthropogenic factors including species succes-
sional sequences, historic and current land use, distur-
bance regime, and soil type (Goodale and Aber 2001,
Ollinger et al. 2002).

Whole-canopy N concentration data from the BEF,
reserved from multi-scene calibration equation devel-
opment, provides some means of assessing the accu-
racy of the AVIRIS predictive equations with indepen-
dent data. A plot of field-measured vs. AVIRIS-pre-
dicted values of canopy N concentration for BEF plots
reserved from multi-scene regression (Fig. 6a.) shows
generally good agreement (R2 5 0.71, SEE 5 0.19),
with some tendency towards under-prediction at the
high end of the range.

Likewise, independent field measurements of the
control watershed (W6) at the Hubbard Brook Exper-
imental Forest (New Hampshire, USA) (Whittaker et
al. 1974) and more recently the Cone Pond (New
Hampshire, USA) watershed (J. W. Hornbeck, unpub-
lished data) which both lie within the WMNF provide
a limited independent-evaluation data set for AVIRIS-
derived wood production estimates (Fig. 6b.). AVIRIS-
derived estimates for Hubbard Brook W6 are an area
average for the watershed and are thus directly com-
parable to the area-weighted estimates for W6 reported
by Whittaker et al. (1974). Estimates for Cone Pond
are based on 2 3 2 pixel averages around each of nine
0.04-ha plots clustered in three sample areas, one de-
ciduous forest sample area and two areas of evergreen
spruce–fir forest. Field-based productivity values for
Cone Pond were measured over successive growing
seasons between 1987 and 1991.

For the spruce–fir forest sites at the Cone Pond wa-
tershed, field-measured estimates of wood production
are 211, 143, and 127 g·m22·yr21 in one sample area
and 228, 203, and 211 g·m22·yr21 in the second sample
area. AVIRIS-predicted values for these conifer sites
are 160, 172, and 157 g·m22·yr21 for the former and
189, 197, and 205 g·m22·yr21 for the latter.

Field-measured wood production values for the pre-
dominantly broad-leaved deciduous control watershed
at Hubbard Brook range from 529 to 423 g·m22·yr21

(based on Whittaker et al. [1974] stem wood 1 branch
wood measures for the periods 1956–1960 and 1961–
1965, respectively) vs. AVIRIS-predicted wood pro-
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FIG. 6. AVIRIS-predicted values for (a) whole-canopy ni-
trogen concentration in relation to measured values for 32
forest stands from the Bartlett Experimental Forest, New
Hampshire, USA, not included in the multi-scene AVIRIS
calibration (R2 5 0.71, SEE 5 0.19) and (b) aboveground
wood production in relation to independent measures from
the Hubbard Brook Experimental Forest (New Hampshire,
USA; solid circles) and Cone Pond (New Hampshire, USA;
open circles and triangles) watersheds (R2 5 0.86, SEE 5
31.49). Measures from Hubbard Brook represent two mea-
surement periods, 1956–1960 and 1961–1965. In both panels,
circles represent broad-leaved deciduous-dominated forest
sites and triangles represent needle-leaved evergreen-domi-
nated forest sites; dashed lines represent the 1:1 relationship.

duction of 371 g·m22·yr21. For similar forested stands
at Cone Pond, measured wood production values are
338, 313, and 388 g·m22·yr21 vs. AVIRIS-predicted val-
ues of 357, 317, and 341 g·m22·yr21, respectively.

The larger difference in AVIRIS-predicted vs. mea-
sured wood production values for Hubbard Brook W6
relative to those predicted for Cone Pond may be due
to the much longer time interval between field mea-
surements and AVIRIS image acquisition at Hubbard
Brook W6 than at Cone Pond, and to mean stand age
at time of field measurement. Stands at Hubbard Brook

W6 were between 40 and 60 yr of age at the time of
measurement in the early- to mid-1960s (stands at Cone
Pond were more than 100 yr old at time of measure-
ment), thus the apparent reduction in the rate of forest
production at Hubbard Brook W6 detected via remote
sensing may reflect a natural successional or age-re-
lated decline (see Gower et al. 1996) in the rate of
forest growth as this forest approaches maturity, i.e.,
stand ages of 80–100 yr in northern hardwood forests
of New England (Hornbeck and Leak 1992).

Although our analysis was not designed to address
this question directly, results from this and a related
study indicate several potentially competing mecha-
nisms by which growth rates might change over time.
In forest ecosystems, succession typically involves ear-
ly dominance by species with a suite of associated
traits, including high foliar nitrogen, high photosyn-
thetic capacity, low shade tolerance, high relative
growth rates, and short life-span (Bazzaz 1979, Tilman
1988, Reich et al. 1992). Species characteristic of later-
successional communities tend to exhibit contrasting
properties (e.g., lower foliar N, increased shade tol-
erance, etc.) indicative of reduced rates of physiolog-
ical activity and increased life-span. Foliar N concen-
tration for the species examined in our study are con-
sistent with this pattern, with early successional species
(e.g., pin cherry and paper birch) tending to have higher
foliar N concentration and shorter life-spans than later-
successional, shade-tolerant species such as sugar ma-
ple and American beech (Smith and Martin 2001, Ol-
linger et al. 2002). Given the canopy N-productivity
trends shown in Fig. 2, we might expect that pro-
ductivity should decline over time given the increas-
ing dominance of species that generally have lower
foliar N.

However, this explanation is relatively simplistic and
ignores variation in foliar N that can occur within spe-
cies in response to differences in soil properties and
disturbance history. In a study that focused on patterns
of N cycling in White Mountain forest ecosystems,
Ollinger et al. (2002) examined species-level leaf N
concentrations with respect to soil N availability and
found that both may vary as a function of stand age
and history. For deciduous stands, leaf N concentration
for a given species were often higher in old and rela-
tively undisturbed stands than in younger stands of
similar species composition in earlier stages of recov-
ery from some major disturbance (clear-cutting or fire).
This was attributed to disturbance effects on N min-
eralization. In other words, while there are differences
in foliar N concentration between species that vary
predictably over the course of succession (and may be
reflected through time in forest growth rates), large
differences in foliar N concentration can also occur
within species due to disturbance history and soil fer-
tility gradients. Variation in canopy N concentrations
across the White Mountain region as estimated from
AVIRIS spectral response integrates the effects of these
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and perhaps other factors, so without specific knowl-
edge of species distribution, site history, etc., it is im-
possible to draw strong conclusions about changes in
forest growth over time from these data alone.

In aggregate, AVIRIS-predicted values for these in-
dependent productivity data show good agreement with
measured values (R2 5 0.86, SEE 5 31.42 g·m22·yr21),
and predicted values fall well within the observed pre-
cision with which wood production can be measured
by this method at the stand level (SEE 5 38.31
g·m22·yr21, see Table 1 and Fig. 2c). Although such
modest evaluation data sets are clearly not adequate
for a land area as large as the WMNF, this initial effort
does demonstrate the potential of hyperspectral image
data to detect with reasonable accuracy and precision
important components of forest ecosystem function
across a large and heterogeneous landscape.
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Tanré, D., C. Deroo, P. Duhaut, M. Herman, J. J. Morcette,

J. Perbos, and P. Y. Deschamps. 1990. Description of a
computer code to simulate the satellite signal in the solar
spectrum: the 5S code. International Journal of Remote
Sensing 11:659–668.

Tilman, D. 1988. Plant strategies and the dynamics and struc-
ture of plant communities. Princeton University Press,
Princeton, New Jersey, USA.

Tritton, L. M., and J. W. Hornbeck. 1981. Biomass equations

for major tree species of the Northeast. USDA Forest Ser-
vice, General Technical Report NE-69.

Turner, D. P., W. B. Cohen, R. A. Kennedy, K. S. Fassnacht,
and J. M. Briggs. 1999. Relationships between leaf area
index and Landsat TM spectral vegetation indices across
three temperate zone sites. Remote Sensing of Environment
70:52–68.

Van Cleve, K., R. Oliver, L. A. Schlenter, and C. T. Dryness.
1983. Production and nutrient cycling in taiga forest eco-
systems. Canadian Journal of Forest Research 13:747–766.

Vitousek, P. M., D. R. Turner, and K. Kitayama. 1995. Foliar
nutrients during long-term soil development in Hawaiian
montane rain forest. Ecology 76:712–720.

Wessman, C. A., J. D. Aber, D. L. Peterson, and J. M. Melillo.
1988. Remote sensing of canopy chemistry and nitrogen
cycling in temperate forest ecosystems. Nature 335:154–
156.

White, J. D., C. M. Trotter, L. J. Brown, and N. Scott. 2000.
Nitrogen concentration in New Zealand vegetation foliage
derived from laboratory and field spectroscopy. Interna-
tional Journal of Remote Sensing 21:2525–2531.

Whittaker, R. H., F. H. Bormann, G. E. Likens, and T. G.
Siccama. 1974. The Hubbard Brook ecosystem study: for-
est biomass and production. Ecological Monographs 44:
233–254.

Wright, G. C., M. J. Bell, and G. L. Hammer. 1993. Leaf
nitrogen content and minimum temperature interactions af-
fect radiation-use efficiency in peanut. Crop Science 33:
476–481.

Yin, X. 1992. Empirical relationships between temperature
and nitrogen availability across North American forests.
Canadian Journal of Forest Research 22:707–712.

Zagolski, F., V. Pinel, J. Romier, D. Alcayde, J. P. Gastellu-
Etchegorry, G. Giordano, G. Marty, and E. Mougin. 1996.
Forest canopy chemistry with high spectral resolution re-
mote sensing. International Journal of Remote Sensing 17:
1107–1128.


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	10-1-2002

	DIRECT ESTIMATION OF ABOVEGROUND FOREST PRODUCTIVITY THROUGH HYPERSPECTRAL REMOTE SENSING OF CANOPY NITROGEN
	Marie-Louise Smith
	Scott V. Ollinger
	Mary E. Martin
	John D. Aber
	Richard A. Hallett
	See next page for additional authors
	Recommended Citation
	Authors


	DIRECT ESTIMATION OF ABOVEGROUND FOREST PRODUCTIVITY THROUGH HYPERSPECTRAL REMOTE SENSING OF CANOPY NITROGEN

