Monte Carlo approaches to radiation transport have several attractive properties compared to deterministic
methods. These include simplicity of implementation, high accuracy, and good parallel scaling. Moreover,
Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial
dimensions, which makes them particularly interesting in modeling complex multi-dimensional astrophysical
phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for
modeling neutrino transport in core-collapse supernovae. We generalize the implicit Monte Carlo photon transport
scheme of Fleck & Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-,
and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that,
similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with
explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant
speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent,
implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents an attractive approach for use in
neutrino radiation-hydrodynamics simulations of core-collapse supernovae. Our velocity-dependent scheme
can easily be adapted to photon transport