1,303 research outputs found
Angular motion of a PAH molecule in interstellar environment
Polycyclic aromatic hydrocarbon (PAH) molecules have recently been proposed as an important and hitherto undetected component of the Interstellar Medium (ISM). The theory was based on an explanation of the Unidentified IR Emission Bands by Leger et al. It has already led to a verified prediction on extended galactic and extragalactic emissions measured by IRAS, or by a recent balloon borne experiment. The physics that rules the motion of such molecules in the ISM was studied, taking into account their coupling with the ambient gas, the radiation field (absorption and emission) and the static magnetic field. This is important for many implications of the PAH theory such as the radio emission by these molecules or the expected polarization of their IR emission. A reflection nebulae is considered where the situation is rather well known. Every day life of a mean PAH molecule in such a region is as follows: every 3 hrs a UV photon is absorbed heating the molecule to a thousand degs; the temperature decay due to cooling by IR emission follows then within a few seconds. A collision with a molecule of gas occurs typically once a week, while an H atom is ejected or captured at the same rate. A typical cooling cycle after a heat impulse is given. The PAH molecules studied as representative of the family has typically 50 atoms, a radius of 4.5 A, is circular and has a molecular mass of M = 300; its permanent dipole moment is 3 Debye
Physical conditions in the ISM towards HD185418
We have developed a complete model of the hydrogen molecule as part of the
spectral simulation code Cloudy. Our goal is to apply this to spectra of
high-redshift star-forming regions where H2 absorption is seen, but where few
other details are known, to understand its implication for star formation. The
microphysics of H2 is intricate, and it is important to validate these
numerical simulations in better-understood environments. This paper studies a
well-defined line-of-sight through the Galactic interstellar medium (ISM) as a
test of the microphysics and methods we use. We present a self-consistent
calculation of the observed absorption-line spectrum to derive the physical
conditions in the ISM towards HD185418, a line-of-sight with many observables.
We deduce density, temperature, local radiation field, cosmic ray ionization
rate, chemical composition and compare these conclusions with conditions
deduced from analytical calculations. We find a higher density, similar
abundances, and require a cosmic ray flux enhanced over the Galactic background
value, consistent with enhancements predicted by MHD simulations.Comment: 31 pages, accepted for publication in Ap
Sequential and Spontaneous Star Formation Around the Mid-Infrared Halo HII Region KR 140
We use 2MASS and MSX infrared observations, along with new molecular line
(CO) observations, to examine the distribution of young stellar objects (YSOs)
in the molecular cloud surrounding the halo HII region KR 140 in order to
determine if the ongoing star-formation activity in this region is dominated by
sequential star formation within the photodissociation region (PDR) surrounding
the HII region. We find that KR 140 has an extensive population of YSOs that
have spontaneously formed due to processes not related to the expansion of the
HII region. Much of the YSO population in the molecular cloud is concentrated
along a dense filamentary molecular structure, traced by C18O, that has not
been erased by the formation of the exciting O star. Some of the previously
observed submillimetre clumps surrounding the HII region are shown to be sites
of recent intermediate and low-mass star formation while other massive starless
clumps clearly associated with the PDR may be the next sites of sequential star
formation.Comment: Accepted for publication in MNRAS, 8 pages, 10 figure
Analysis of the thin layer of Galactic warm ionized gas in the range 20 < l < 30 deg, -1.5 < b < +1.5 deg
We present an analysis of the thin layer of Galactic warm ionized gas at an
angular resolution ~ 10'. This is carried out using radio continuum data at 1.4
GHz, 2.7 GHz and 5 GHz in the coordinate region 20 < l < 30 deg, -1.5 < b <
+1.5 deg. For this purpose, we evaluate the zero level of the 2.7 and 5 GHz
surveys using auxiliary data at 2.3 GHz and 408 MHz. The derived zero level
corrections are T_{zero}(2.7 GHz)=0.15 +/- 0.06 K and T_{zero}(5 GHz)=0.1 +/-
0.05 K. We separate the thermal (free-free) and non-thermal (synchrotron)
component by means of a spectral analysis performed adopting an antenna
temperature spectral index -2.1 for the free-free emission, a realistic spatial
distribution of indices for the synchrotron radiation and by fitting,
pixel-by-pixel, the Galactic spectral index. We find that at 5 GHz, for |b| = 0
deg, the fraction of thermal emission reaches a maximum value of 82%, while at
1.4 GHz, the corresponding value is 68%. In addition, for the thermal emission,
the analysis indicates a dominant contribution of the diffuse component
relative to the source component associated with discrete HII regions.Comment: 9 pages, 9 figures, accepted to MNRA
The XMM-Newton Project
The abundance of high-redshift galaxy clusters depends sensitively on the
matter density \OmM and, to a lesser extent, on the cosmological constant
. Measurements of this abundance therefore constrain these fundamental
cosmological parameters, and in a manner independent and complementary to other
methods, such as observations of the cosmic microwave background and distance
measurements. Cluster abundance is best measured by the X-ray temperature
function, as opposed to luminosity, because temperature and mass are tightly
correlated, as demonstrated by numerical simulations. Taking advantage of the
sensitivity of XMM-Newton, our Guaranteed Time program aims at measuring the
temperature of the highest redshift (z>0.4) SHARC clusters, with the ultimate
goal of constraining both \OmM and .Comment: To appear in the Proceedings of the XXI Moriond Conference: Galaxy
Clusters and the High Redshift Universe Observed in X-rays, edited by D.
Neumann, F. Durret, & J. Tran Thanh Va
A multiwavelength study of Galactic HII region Sh2-294
We present the observational results of Galactic HII region S294, using
optical photometry, narrow-band imaging and radio continuum mapping at 1280
MHz, together with archival data from 2MASS, MSX and IRAS surveys. The stellar
surface density profile indicates that the radius of the cluster associated
with the S294 region is ~ 2.3 arcmin. We found an anomalous reddening law for
the dust inside the cluster region and the ratio of total-to-selective
extinction is found to be 3.8+-0.1. We estimate the minimum reddening E (B-V) =
1.35 mag and distance of 4.8+-0.2 kpc to the region from optical CC and CM
diagrams. We identified the ionizing source of the HII region, and spectral
type estimates are consistent with a star of spectral type ~ B0 V. The 2MASS
JHKs images reveal a partially embedded cluster associated with the ionizing
source along with a small cluster towards the eastern border of S294. The
ionization front seen along the direction of small cluster in radio continuum
and Halpha images, might be due to the interaction of ionizing sources with the
nearby molecular cloud. We found an arc shaped diffuse molecular hydrogen
emission at 2.12 micron and a half ring of MSX dust emission which surrounds
the ionized gas in the direction of the ionization front. Self consistent
radiative transfer model of mid- to far-infrared continuum emission detected
near small cluster is in good agreement with the observed spectral energy
distribution of a B1.5 ZAMS star. The morphological correlation between the
ionised and molecular gas, along with probable time scale involved between the
ionising star, evolution of HII region and small cluster, indicates that the
star-formation activity observed at the border is probably triggered by the
expansion of HII region.Comment: 50 pages, 21 figures: Accepted by The Astrophysical Journal; Also
available at http://www.tifr.res.in/~ojha/S294.pd
Planck's Dusty GEMS: Gravitationally lensed high-redshift galaxies discovered with the Planck survey
We present an analysis of 11 bright far-IR/submm sources discovered through a
combination of the Planck survey and follow-up Herschel-SPIRE imaging. Each
source has a redshift z=2.2-3.6 obtained through a blind redshift search with
EMIR at the IRAM 30-m telescope. Interferometry obtained at IRAM and the SMA,
and optical/near-infrared imaging obtained at the CFHT and the VLT reveal
morphologies consistent with strongly gravitationally lensed sources.
Additional photometry was obtained with JCMT/SCUBA-2 and IRAM/GISMO at 850 um
and 2 mm, respectively. All objects are bright, isolated point sources in the
18 arcsec beam of SPIRE at 250 um, with spectral energy distributions peaking
either near the 350 um or the 500 um bands of SPIRE, and with apparent
far-infrared luminosities of up to 3x10^14 L_sun. Their morphologies and sizes,
CO line widths and luminosities, dust temperatures, and far-infrared
luminosities provide additional empirical evidence that these are strongly
gravitationally lensed high-redshift galaxies. We discuss their dust masses and
temperatures, and use additional WISE 22-um photometry and template fitting to
rule out a significant contribution of AGN heating to the total infrared
luminosity. Six sources are detected in FIRST at 1.4 GHz. Four have flux
densities brighter than expected from the local far-infrared-radio correlation,
but in the range previously found for high-z submm galaxies, one has a deficit
of FIR emission, and 6 are consistent with the local correlation. The global
dust-to-gas ratios and star-formation efficiencies of our sources are
predominantly in the range expected from massive, metal-rich, intense,
high-redshift starbursts. An extensive multi-wavelength follow-up programme is
being carried out to further characterize these sources and the intense
star-formation within them.Comment: A&A accepte
Star Formation and Young Population of the HII Complex Sh2-294
The Sh2-294 HII region ionized by a single B0V star features several infrared
excess sources, a photodissociation region, and also a group of reddened stars
at its border. The star formation scenario in the region seems to be quite
complex. In this paper, we present follow-up results of Sh2-294 HII region at
3.6, 4.5, 5.8, and 8.0 microns observed with the Spitzer Space Telescope
Infrared Array Camera (IRAC), coupled with H2 (2.12 microns) observation, to
characterize the young population of the region and to understand its star
formation history. We identified 36 young stellar object (YSO, Class I, Class
II and Class I/II) candidates using IRAC color-color diagrams. It is found that
Class I sources are preferentially located at the outskirts of the HII region
and associated with enhanced H2 emission; none of them are located near the
central cluster. Combining the optical to mid-infrared (MIR) photometry of the
YSO candidates and using the spectral energy distribution fitting models, we
constrained stellar parameters and the evolutionary status of 33 YSO
candidates. Most of them are interpreted by the model as low-mass (< 4 solar
masses) YSOs; however, we also detected a massive YSO (~9 solar masses) of
Class I nature, embedded in a cloud of visual extinction of ~24 mag. Present
analysis suggests that the Class I sources are indeed younger population of the
region relative to Class II sources (age ~ 4.5 x 10^6 yr). We suggest that the
majority of the Class I sources, including the massive YSOs, are
second-generation stars of the region whose formation is possibly induced by
the expansion of the HII region powered by a ~ 4 x 10^6 yr B0 main-sequence
star.Comment: 12 pages, 7 figures, 2 tables. Accepted for publication in The
Astrophysical Journa
Multi-wavelength analysis of the dust emission in the Small Magellanic Cloud
We present an analysis of dust grain emission in the diffuse interstellar
medium of the Small Magellanic Cloud (SMC). This study is motivated by the
availability of 170 microns ISOPHOT data covering a large part of the SMC, with
a resolution enabling to disentangle the diffuse medium from the star forming
regions. After data reduction and subtraction of Galactic foreground emission,
we used the ISOPHOT data together with HiRes IRAS data and ATCA/Parkes combined
HI column density maps to determine dust properties for the diffuse medium. We
found a far infrared emissivity per hydrogen atom 30 times lower than the Solar
Neighborhood value. The modeling of the spectral energy distribution of the
dust, taking into account the enhanced interstellar radiation field, gives a
similar conclusion for the smallest grains (PAHs and very small grains)
emitting at shorter wavelength. Assuming Galactic dust composition in the SMC,
this result implies a difference in the gas-to-dust ratio (GDR) 3 times larger
than the difference in metallicity. This low depletion of heavy elements in
dust could be specific of the diffuse ISM and not apply for the whole SMC dust
if it results from efficient destruction of dust by supernovae explosions.Comment: 11 pages, 10 figures. Accepted for publication in Astronomy &
Astrophysic
- …
