1,074 research outputs found
Controlling qubit transitions during non-adiabatic rapid passage through quantum interference
In adiabatic rapid passage, the Bloch vector of a qubit is inverted by slowly
inverting an external field to which it is coupled, and along which it is
initially aligned. In non-adiabatic twisted rapid passage, the external field
is allowed to twist around its initial direction with azimuthal angle \phi(t)
at the same time that it is non-adiabatically inverted. For polynomial twist,
\phi(t) \sim Bt^{n}. We show that for n \ge 3, multiple qubit resonances can
occur during a single inversion of the external field, producing strong
interference effects in the qubit transition probability. The character of the
interference is controllable through variation of the twist strength B.
Constructive and destructive interference are possible, greatly enhancing or
suppressing qubit transitions. Experimental confirmation of these controllable
interference effects has already occurred. Application of this interference
mechanism to the construction of fast fault-tolerant quantum CNOT and NOT gates
is discussed.Comment: 8 pages, 7 figures, 2 tables; submitted to J. Mod. Op
A new spin-2 self-dual model in
There are three self-dual models of massive particles of helicity +2 (or -2)
in . Each model is of first, second, and third-order in derivatives.
Here we derive a new self-dual model of fourth-order, \cL {SD}^{(4)}, which
follows from the third-order model (linearized topologically massive gravity)
via Noether embedment of the linearized Weyl symmetry. In fact, each self-dual
model can be obtained from the previous one  \cL {SD}^{(i)} \to \cL
{SD}^{(i+1)}, i=1,2,3 by the Noether embedment of an appropriate gauge
symmetry, culminating in \cL {SD}^{(4)}. The new model may be identified with
the linearized version of \cL {HDTMG} = \epsilon^{\mu\nu\rho}
\Gamma_{\mu\gamma}^\epsilon (\p_\nu\Gamma_{\epsilon\rho}^\gamma +
(2/3)\Gamma_{\nu\delta}^\gamma \Gamma_{\rho\epsilon}^\delta) /8 m +
\sqrt{-g}(R_{\mu\nu} R^{\nu\mu} - 3 R^2/8) /2 m^2 . We also construct a master
action relating the third-order self-dual model to \cL {SD}^{(4)} by means of
a mixing term with no particle content which assures spectrum equivalence of
\cL {SD}^{(4)} to other lower-order self-dual models despite its pure higher
derivative nature and the absence of the Einstein-Hilbert action. The relevant
degrees of freedom of \cL {SD}^{(4)} are encoded in a rank-two tensor which
is symmetric, traceless and transverse due to trivial (non-dynamic) identities,
contrary to other spin-2 self-dual models. We also show that the Noether
embedment of the Fierz-Pauli theory leads to the new massive gravity of
Bergshoeff, Hohm and Townsend.Comment: 14 pages, no figures, typos fixed, reference (19) modifie
Mie scattering from a sonoluminescing air bubble in water
Applied Optics, Volume 34, No. 15, pp. 2648-2654 (20 May 1995)A single bubble of air in water can emit pulses of blue-white light that have durations of less than 50 ps
while it is oscillating in an acoustic standing wave. The emission is called sonoluminescence. A
knowledge of the bubble diameter throughout the cycle, and in particular near the time of sonoluminescence
emission, can provide important information about the phenomenon. A new Mie scattering
technique is developed to determine the size of the bubble through its expansion and collapse during the
acoustic cycle. The technique does not rely on an independent means of calibration or on accurate
measurements of the scattered intensity.This work was supported in part by the Naval Postgraduate School Research Program and the Office of Naval Research
From Sensing to Action: Quick and Reliable Access to Information in Cities Vulnerable to Heavy Rain
Cities need to constantly monitor weather to anticipate heavy storm events and reduce the impact of floods. Information describing precipitation and ground conditions at high spatio-temporal resolution is essential for taking timely action and preventing damages. Traditionally, rain gauges and weather radars are used to monitor rain events, but these sources provide low spatial resolutions and are subject to inaccuracy. Therefore, information needs to be complemented with data from other sources: from citizens' phone calls to the authorities, to relevant online media posts, which have the potential of providing timely and valuable information on weather conditions in the city. This information is often scattered through different, static, and not-publicly available databases. This makes it impossible to use it in an aggregate, standard way, and therefore hampers efficiency of emergency response. In this paper, we describe information sources relating to a heavy rain event in Rotterdam on October 12-14, 2013. Rotterdam weather monitoring infrastructure is composed of a number of rain gauges installed at different locations in the city, as well as a weather radar network. This sensing network is currently scarcely integrated and logged data are not easily accessible during an emergency. Therefore, we propose a reliable, efficient, and low-cost ICT infrastructure that takes information from all relevant sources, including sensors as well as social and user contributed information and integrates them into a unique, cloud-based interface. The proposed infrastructure will improve efficiency in emergency responses to extreme weather events and, ultimately, guarantee more safety to the urban population
Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes
Quantum convolutional codes, like their classical counterparts, promise to
offer higher error correction performance than block codes of equivalent
encoding complexity, and are expected to find important applications in
reliable quantum communication where a continuous stream of qubits is
transmitted. Grassl and Roetteler devised an algorithm to encode a quantum
convolutional code with a "pearl-necklace encoder." Despite their theoretical
significance as a neat way of representing quantum convolutional codes, they
are not well-suited to practical realization. In fact, there is no
straightforward way to implement any given pearl-necklace structure. This paper
closes the gap between theoretical representation and practical implementation.
In our previous work, we presented an efficient algorithm for finding a
minimal-memory realization of a pearl-necklace encoder for
Calderbank-Shor-Steane (CSS) convolutional codes. This work extends our
previous work and presents an algorithm for turning a pearl-necklace encoder
for a general (non-CSS) quantum convolutional code into a realizable quantum
convolutional encoder. We show that a minimal-memory realization depends on the
commutativity relations between the gate strings in the pearl-necklace encoder.
We find a realization by means of a weighted graph which details the
non-commutative paths through the pearl-necklace. The weight of the longest
path in this graph is equal to the minimal amount of memory needed to implement
the encoder. The algorithm has a polynomial-time complexity in the number of
gate strings in the pearl-necklace encoder.Comment: 16 pages, 5 figures; extends paper arXiv:1004.5179v
Type II supernova spectral diversity, II: spectroscopic and photometric correlations
We present an analysis of observed trends and correlations between a large range of spectral and photometric parameters of more than 100 type II supernovae (SNe II), during the photospheric phase. We define a common epoch for all SNe of 50 days post-explosion, where the majority of the sample is likely to be under similar physical conditions. Several correlation matrices are produced to search for interesting trends between more than 30 distinct light-curve and spectral properties that characterize the diversity of SNe II. Overall, SNe with higher expansion velocities are brighter, have more rapidly declining light curves, shorter plateau durations, and higher 56Ni masses. Using a larger sample than previous studies, we argue that "Pd" - the plateau duration from the transition of the initial to "plateau" decline rates to the end of the "plateau" - is a better indicator of the hydrogen envelope mass than the traditionally used optically thick phase duration (OPTd: explosion epoch to end of plateau). This argument is supported by the fact that Pd also correlates with s 3, the light-curve decline rate at late times: lower Pd values correlate with larger s 3 decline rates. Large s 3 decline rates are likely related to lower envelope masses, which enables gamma-ray escape. We also find a significant anticorrelation between Pd and s 2 (the plateau decline rate), confirming the long standing hypothesis that faster declining SNe II (SNe IIL) are the result of explosions with lower hydrogen envelope masses and therefore have shorter Pd values.Fil: Gutiérrez, Claudia P.. Universidad de Chile; Chile. University of Southampton; Reino Unido. European Southern Observatory Santiago; Chile. Millennium Institute Of Astrophysics; ChileFil: Anderson, Joseph P.. European Southern Observatory Santiago; ChileFil: Hamuy, Mario. Millennium Institute Of Astrophysics; Chile. Universidad de Chile; ChileFil: González Gaitan, Santiago. Universidad de Chile; Chile. Universidade de Lisboa; Portugal. Millennium Institute Of Astrophysics; ChileFil: Galbany, Lluis. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Dessart, Luc. Universidad de Chile; ChileFil: Stritzinger, Maximilian D.. University Aarhus; DinamarcaFil: Phillips, Mark M.. Las Campanas Observatory; ChileFil: Morrell, Nidia. Las Campanas Observatory; ChileFil: Folatelli, Gaston. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentin
Edge Tunneling of Vortices in Superconducting Thin Films
We investigate the phenomenon of the decay of a supercurrent due to the
zero-temperature quantum tunneling of vortices from the edge in a thin
superconducting film in the absence of an external magnetic field. An explicit
formula is derived for the tunneling rate of vortices, which are subject to the
Magnus force induced by the supercurrent, through the Coulomb-like potential
barrier binding them to the film's edge. Our approach ensues from the
non-relativistic version of a Schwinger-type calculation for the decay of the
2D vacuum previously employed for describing vortex-antivortex pair-nucleation
in the bulk of the sample. In the dissipation-dominated limit, our explicit
edge-tunneling formula yields numerical estimates which are compared with those
obtained for bulk-nucleation to show that both mechanisms are possible for the
decay of a supercurrent.Comment: REVTeX file, 15 pages, 1 Postscript figure; to appear in Phys.Rev.
Comment on "Transverse Force on a Quantized Vortex in a Superfluid"
The result of Thouless, Ao and Niu (TAN), that the mutual friction parameter
, contradicts to the experiments made in rotating 3He-B by
Manchester group. The Manchester group observed that  at low
temperature and approaches 1 at high temperature. The reason of the
contradiction is that TAN did not take into account the Iordanskii force on the
vortex and the spectral flow force, which comes from the anomaly related to the
low-energy bound states of fermions in cores of quantized vortices. The
Iordanskii force is responsible for the negative  at low
temperature, while due to the spectral flow  approaches 1 at high
temperature. Relation of the spectral flow anomaly with the paradoxes of the
linear and angular momenta in gapless superfluids is discussed.Comment: revtex, 2 pages, submitted to Physical Review Letters as "Comment" to
  the paper D.J. Thouless, P. Ao and Q. Niu, Phys. Rev. Lett. 76, 3758 (1996
Designing Robust Unitary Gates: Application to Concatenated Composite Pulse
We propose a simple formalism to design unitary gates robust against given
systematic errors. This formalism generalizes our previous observation [Y.
Kondo and M. Bando, J. Phys. Soc. Jpn. 80, 054002 (2011)] that vanishing
dynamical phase in some composite gates is essential to suppress amplitude
errors. By employing our formalism, we naturally derive a new composite unitary
gate which can be seen as a concatenation of two known composite unitary
operations. The obtained unitary gate has high fidelity over a wider range of
the error strengths compared to existing composite gates.Comment: 7 pages, 4 figures. Major revision: improved presentation in Sec. 3,
  references and appendix adde
- …
