In adiabatic rapid passage, the Bloch vector of a qubit is inverted by slowly
inverting an external field to which it is coupled, and along which it is
initially aligned. In non-adiabatic twisted rapid passage, the external field
is allowed to twist around its initial direction with azimuthal angle \phi(t)
at the same time that it is non-adiabatically inverted. For polynomial twist,
\phi(t) \sim Bt^{n}. We show that for n \ge 3, multiple qubit resonances can
occur during a single inversion of the external field, producing strong
interference effects in the qubit transition probability. The character of the
interference is controllable through variation of the twist strength B.
Constructive and destructive interference are possible, greatly enhancing or
suppressing qubit transitions. Experimental confirmation of these controllable
interference effects has already occurred. Application of this interference
mechanism to the construction of fast fault-tolerant quantum CNOT and NOT gates
is discussed.Comment: 8 pages, 7 figures, 2 tables; submitted to J. Mod. Op