research

Controlling qubit transitions during non-adiabatic rapid passage through quantum interference

Abstract

In adiabatic rapid passage, the Bloch vector of a qubit is inverted by slowly inverting an external field to which it is coupled, and along which it is initially aligned. In non-adiabatic twisted rapid passage, the external field is allowed to twist around its initial direction with azimuthal angle \phi(t) at the same time that it is non-adiabatically inverted. For polynomial twist, \phi(t) \sim Bt^{n}. We show that for n \ge 3, multiple qubit resonances can occur during a single inversion of the external field, producing strong interference effects in the qubit transition probability. The character of the interference is controllable through variation of the twist strength B. Constructive and destructive interference are possible, greatly enhancing or suppressing qubit transitions. Experimental confirmation of these controllable interference effects has already occurred. Application of this interference mechanism to the construction of fast fault-tolerant quantum CNOT and NOT gates is discussed.Comment: 8 pages, 7 figures, 2 tables; submitted to J. Mod. Op

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019