18,511 research outputs found
Comparing Multi-Label Classification Methods for Provisional Biopharmaceutics Class Prediction.
On the behavior of clamped plates under large compression
We determine the asymptotic behavior of eigenvalues of clamped plates under large compression by relating this problem to eigenvalues of the Laplacian with Robin boundary conditions. Using the method of fundamental solutions, we then carry out a numerical study of the extremal domains for the first eigenvalue, from which we see that these depend on the value of the compression, and start developing a boundary structure as this parameter is increased. The corresponding number of nodal domains of the first eigenfunction of the extremal domain also increases with the compression.This work was partially supported by the Funda ̧c ̃ao para a Ciˆencia e a Tecnologia(Portugal) through the program “Investigador FCT” with reference IF/00177/2013 and the projectExtremal spectral quantities and related problems(PTDC/MAT-CAL/4334/2014).info:eu-repo/semantics/publishedVersio
Phenomenology of the Little Higgs model with X-Parity
In the popular littlest Higgs model, T-parity can be broken by
Wess-Zumino-Witten (WZW) terms induced by a strongly coupled UV completion. On
the other hand, certain models with multiple scalar multiplets (called moose
models) permit the implementation of an exchange symmetry (X-parity) such that
it is not broken by the WZW terms. Here we present a concrete and realistic
construction of such a model. The little Higgs model with X-Parity is a
concrete and realistic implementation of this idea. In this contribution, the
properties of the model are reviewed and the collider phenomenology is
discussed in some detail. We also present new results on the decay properties
and LHC signatures of the light triplet scalars that are predicted by this
model.Comment: 12 pages, to appear in in the proceedings of the International
Workshop on Beyond the Standard Model Physics and LHC Signatures (BSM-LHC)
and of the 17th International Conference on Supersymmetry and the Unification
of Fundamental Interactions (SUSY09), Boston, USA, 2-4 and 5-10 Jun 200
Extreme Value Theory for Piecewise Contracting Maps with Randomly Applied Stochastic Perturbations
We consider globally invertible and piecewise contracting maps in higher
dimensions and we perturb them with a particular kind of noise introduced by
Lasota and Mackey. We got random transformations which are given by a
stationary process: in this framework we develop an extreme value theory for a
few classes of observables and we show how to get the (usual) limiting
distributions together with an extremal index depending on the strength of the
noise.Comment: 16 pages. arXiv admin note: text overlap with arXiv:1407.041
A lower bound to the spectral threshold in curved tubes
We consider the Laplacian in curved tubes of arbitrary cross-section rotating
together with the Frenet frame along curves in Euclidean spaces of arbitrary
dimension, subject to Dirichlet boundary conditions on the cylindrical surface
and Neumann conditions at the ends of the tube. We prove that the spectral
threshold of the Laplacian is estimated from below by the lowest eigenvalue of
the Dirichlet Laplacian in a torus determined by the geometry of the tube.Comment: LaTeX, 13 pages; to appear in R. Soc. Lond. Proc. Ser. A Math. Phys.
Eng. Sc
The compound Poisson limit ruling periodic extreme behaviour of non-uniformly hyperbolic dynamics
We prove that the distributional limit of the normalised number of returns to
small neighbourhoods of periodic points of non-uniformly hyperbolic dynamical
systems is compound Poisson. The returns to small balls around a fixed point in
the phase space correspond to the occurrence of rare events, or exceedances of
high thresholds, so that there is a connection between the laws of Return Times
Statistics and Extreme Value Laws. The fact that the fixed point in the phase
space is a repelling periodic point implies that there is a tendency for the
exceedances to appear in clusters whose average sizes is given by the Extremal
Index, which depends on the expansion of the system at the periodic point.
We recall that for generic points, the exceedances, in the limit, are
singular and occur at Poisson times. However, around periodic points, the
picture is different: the respective point processes of exceedances converge to
a compound Poisson process, so instead of single exceedances, we have entire
clusters of exceedances occurring at Poisson times with a geometric
distribution ruling its multiplicity.
The systems to which our results apply include: general piecewise expanding
maps of the interval (Rychlik maps), maps with indifferent fixed points
(Manneville-Pomeau maps) and Benedicks-Carleson quadratic maps.Comment: To appear in Communications in Mathematical Physic
- …
