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Abstract. We determine the asymptotic behavior of eigenvalues of clamped plates under large

compression by relating this problem to eigenvalues of the Laplacian with Robin boundary conditions.

Using the method of fundamental solutions, we then carry out a numerical study of the extremal

domains for the first eigenvalue, from which we see that these depend on the value of the compression,

and start developing a boundary structure as this parameter is increased. The corresponding number

of nodal domains of the first eigenfunction of the extremal domain also increases with the compression.
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1. Introduction. Let ⌦ be a smooth bounded domain in RN

, N � 2. We are

interested in the following eigenvalue problem:

(1.1)

8

<

:

�

2u+ ↵�u = �u in ⌦,

u =

@u
@⌫

= 0 on @⌦,

considered as a model for a clamped plate. Here ↵ is a real parameter corresponding

to the quotient between the tension and the flexural rigidity and, depending on its

sign, represents whether the plate is under tension (↵ < 0) or compression (↵ > 0).

For domains ⌦ as described above, the eigenvalues of (1.1) form an infinite sequence

�1  �2  · · ·  �
k

 · · · ,

where �
k

= �
k

(⌦,↵) approaches +1 as k goes to infinity.

The study of this and similar problems has been considered in the literature

continuously over time since the works of Lord Rayleigh [26] and Love [21] on clamped

plates. We refer the reader to the book [16] for an extensive historical and scientific

overview on the mechanics of plates through the Kirchho↵–Love model, which leads

to problem (1.1).

In this paper, we are concerned with two issues related to (1.1), namely the

asymptotic behavior of the eigenvalues �
k

as the parameter ↵ approaches +1 (the

⇤
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sidade de Lisboa, Campo Grande, Edif́ıcio C6, P-1749-016 Lisboa, Portugal (prantunes@fc.ul.pt).

‡

EPFL, SB MATH SCI-SB-JS, Station 8, CH-1015 Lausanne, Switzerland (davide.buoso@epfl.ch).

§
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Lisboa, Portugal, and Grupo de F́ısica Matemática, Faculdade de Ciências, Universidade de Lisboa,

Campo Grande, Edif́ıcio C6, P-1749-016 Lisboa, Portugal (psfreitas@fc.ul.pt).

1872

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade Aberta

https://core.ac.uk/display/322887262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CLAMPED PLATES UNDER LARGE COMPRESSION 1873

case of �1 was considered in [14]) and the extremal domains of such eigenvalues as

↵ varies. In the first instance, the above problem is closely related to

(1.2)

8

<

:

�

2v + av + ��v = 0 in ⌦,

v =

@v
@⌫

= 0 on @⌦,

where now the eigenvalue parameter is � = �(a), and the (positive) parameter a
stands for the elasticity constant of the medium surrounding the plate. We know

from a result in [19] that for (1.2)

lim

a!+1

�1(a)p
a

= 2,

which when translated into the eigenvalue problem in (1.1) yields

lim

↵!+1

�1(↵)

↵2 = �1

4

.

Our main result along these lines is to extend this to all eigenvalues �
k

. This is

achieved by an approach di↵erent from that used in [19], involving now a connection

(which, to the best of our knowledge, is new) between the eigenvalues of the clamped

plate problem (1.1) and those of a Robin eigenvalue problem for the Dirichlet Lapla-

cian in the case where ⌦ is a ball; see section 3 for the details. To be more precise,

we prove the following.

Theorem 1.1 (asymptotic behavior of the kth eigenvalue). Let ⌦ be a bounded
domain in RN . Then, for any positive integer k, the eigenvalues of (1.1) satisfy

(1.3) �
k

(⌦,↵) = �↵
2

4

+ o(↵2
)

as ↵! +1. Moreover,

(1.4) �1(⌦,↵) = �↵
2

4

+ O(↵)

as ↵! +1.

For positive values of ↵, each of the eigenvalue curves �
k

= �
k

(↵) is, in fact,

made up of analytic eigenvalue branches which intersect each other; see Figure 1,

where to illustrate this e↵ect we plotted the quantity �
k

(⌦,↵) + ↵2

4

for the disk

and for ellipses. This branch-switching phenomenon makes it much more di�cult to

obtain further terms in the asymptotic expansion, and it is the independence of the

first term on the order of the eigenvalue which allows us to derive the expansion for

all k. In the particular case where ⌦ is a ball of radius R, which is at the heart of

the proof of Theorem 1.1, we are able to prove that the number of such eigenvalue

branches which make up the kth eigencurve is finite, and we determine further terms

in the asymptotic expansion of these analytic branches. These results are summarized

in the following.

Theorem 1.2 (asymptotic behavior of analytic eigenvalue branches for balls).

For any analytical branch of the eigenvalues of problem (1.1) when ⌦ is a ball of
radius R, we have

(1.5) � = �↵
2

4

+

c1↵

R2 +

c2

R4 + o(1)
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Fig. 1. (a) Plot of the quantities �k(⌦,↵) + ↵2

4

, k = 1, 2, . . . , 10, for the disk with unit area,

for ↵ 2 [�200, 1000] (left plot) and a zoom for ↵ 2 [0, 600], illustrating the behavior of the smallest
eigenvalues as a function of ↵ (right plot). (b) Similar results for an ellipse with unit area and
eccentricity equal to

p
3/2.

as ↵! +1, where c1 and c2 are constants depending on the eigenvalue branch, with
c1 being positive. In the case of the first eigenvalue, we have

�1 = �↵
2

4

+

⇡2↵

2R2 +

⇡2
(N2 � 1� ⇡2

)

4R4 + o(1).

The full description of the coe�cients c1 and c2 may be found in Theorem 3.3 in

section 3.

It is possible to consider problem (1.1) with other boundary conditions, such as

the Navier setting. This is not as interesting from a mathematical perspective since

the problem then reduces directly to the study of the second-order elliptic operator

�+ ↵/2. However, and as we show in section 4, there is a major di↵erence between

the Dirichlet and Navier cases in that for the Navier problem the number of crossings

of analytic branches to make up an eigencurve corresponding to the kth eigenvalue is

actually infinite for each k. Complex crossing and avoided-crossing patterns seem to

be a characteristic of such systems in the large compression regime, and they have also

been identified in the one-dimensional fourth-order problem with di↵erent boundary

conditions studied in [11].

Concerning our second topic of study, namely extremal domains for eigenvalues

of problem (1.1), even in the case where the parameter ↵ vanishes the problem is

known to be extremely di�cult with results available only in two and three dimensions

(see [22, 5], respectively); for (1.2), there are no complete results in any dimension.
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Once ↵ is taken to be nonzero in (1.1), the only existing result is an extension to

su�ciently small positive values of ↵ in two dimensions [4]. Our purpose in this part

is thus mainly to provide a numerical exploration of the di↵erent types of extremal

domains under an area restriction, showing in particular that the ball is no longer a

minimizer for large compression.

We consider the numerical solution of the eigenvalue problem (1.1) using the

Method of Fundamental Solutions (see, e.g., [1, 3]). This is a meshless numerical

method where the approximation is made by a discretization of an expansion in terms

of the single and double layer potentials. In particular, by construction, the numerical

approximation satisfies the fourth-order partial di↵erential equation and we can focus

just on the approximation of the boundary conditions of the problem. The computa-

tional implementation of this numerical method is described in section 6.1, and some

numerical results for the shape optimization problem are presented in section 6.3. In

particular, we will study minimizers of the first eigenvalue of problem (1.1) subject

to an area constraint. The obtained numerical results suggest that the minimizer

depends on the parameter ↵, with the ball being the minimizer for all negative ↵
and then extending to ↵ 2 [0,↵?

] for some positive ↵?

. Note that this last result

corresponds to that proved in [4] for su�ciently small ↵, with our numerical simu-

lations suggesting that, in fact, one may take ↵?

to be at least as large as the first

buckling eigenvalue. For large values of the parameter ↵, we obtain some nontrivial

minimizers; see Figure 3.

This numerical study has been performed mainly among general simply connected

domains. However, we performed also the optimization of the first eigenvalue of

problem (1.1) among annuli having unit area and compared the optimal values that

were obtained with the corresponding values of the ball. These results suggest that

the first eigenvalue of the disk is always smaller than the corresponding eigenvalue of

the optimal annulus, independently of the parameter ↵.

2. Statement of the problem. We start by observing that problem (1.1) has

the following weak formulation:

(2.1)

Z

⌦
�u��� ↵rur� = �

Z

⌦
u� 8� 2 H2

0 (⌦),

and its eigenvalues may be described through their variational characterizations:

(2.2) �D
k

(⌦,↵) = min

V⇢H

2
0 (⌦)

dimV=k

max

0 6=u2V

R

⌦(�u)2 � ↵|ru|2
R

⌦ u2
.

In what follows, whenever the meaning is clear from the context, we will drop either

argument in �D
k

(⌦,↵) for the sake of simplicity.

In order to determine the eigenfunctions of problem (1.1) when ⌦ = B
R

(0), we

rewrite (1.1) as

(2.3) (�+ ↵+)(�+ ↵�)u = 0,

where

(2.4) ↵+ =

↵

2

+

r

↵2

4

+ �, ↵� =

↵

2

�
r

↵2

4

+ �.

Both ↵+ and ↵� are always real, as may be seen from inequality (4.6), and ↵+ is

always positive while the sign of ↵� depends on the sign of the eigenvalue �.
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For positive �, it is known that the solution of (2.3) can be written as (cf. [5])

(2.5) u(r, ✓) = r1�
N

2

h

AJ
k+N

2 �1

�

r
p
↵+

�

+BI
k+N

2 �1

�

r
p

�↵�
�

i

S
k

(✓),

where J
⌫

and I
⌫

are the Bessel and the modified Bessel functions, respectively, of the

first kind of order ⌫, and S
k

are the spherical harmonic functions of order k. The

boundary conditions then yield the following system of equations:

(2.6)

⇢

Af
k

(R) +Bg
k

(R) = 0,
Af 0

k

(R) +Bg0
k

(R) = 0,

where we have set

f
k

(r) = r1�
N

2 J
k+N

2 �1

�

r
p
↵+

�

and g
k

(r) = r1�
N

2 I
k+N

2 �1

�

r
p

�↵�
�

.

Since we are interested in the existence of nontrivial solutions of system (2.6), we

impose the corresponding determinant to be zero, namely

(2.7) f
k

(R)g0
k

(R)� g
k

(R)f 0
k

(R) = 0,

from which we obtain the corresponding eigenvalues and, as a consequence, the general

form of the eigenfunctions. Using standard Bessel function identities, (2.7) may be

rewritten as

(2.8)

RJ
k+N

2 �1

�

R
p
↵+

�

kJ
k+N

2 �1

�

R
p
↵+

�

�R
p
↵+J

k+N

2

�

R
p
↵+

�

=

RI
k+N

2 �1

�

R
p

�↵�
�

kI
k+N

2 �1

�

R
p

�↵�
�

+R
p

�↵�I
k+N

2

�

R
p

�↵�
� .

When � is strictly negative, ↵� is strictly positive and, in place of (2.5), we now

have

(2.9) u(r, ✓) = r1�
N

2

h

AJ
k+N

2 �1

�

r
p
↵+

�

+BJ
k+N

2 �1

�

r
p
↵�

�

i

S
k

(✓),

where the coe�cients are given by a system similar to (2.6), and the eigenvalues are

now solutions of

(2.10)

J
k+N

2 �1

�

R
p
↵+

�

kRJ
k+N

2 �1

�

R
p
↵+

�

�p
↵+J

k+N

2

�

R
p
↵+

�

=

J
k+N

2 �1

�

R
p
↵�

�

kRJ
k+N

2 �1

�

R
p
↵�

�

�p
↵�J

k+N

2

�

R
p
↵�

� .

Finally, it remains to consider the case � = 0, which behaves in a slightly di↵erent

way. We note that then ↵+ = ↵ while ↵� = 0, and in particular this means that ↵
has to be an eigenvalue of the following buckling problem:

(2.11)

⇢

�

2u = �⇤�u in ⌦,
u =

@u

@⌫

= 0 on @⌦,

for which the eigenfunctions are known to be of the form (they can be derived in a

similar way as for the other cases)

(2.12) u(r, ✓) =
h

Ar1�
N

2 J
k+N

2 �1

�

r
p
↵
�

+Brk
i

S
k

(✓).
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In particular, ↵ has to be a solution of the following:

(2.13) J
k+N

2

�

R
p
↵
�

= 0.

Moreover, if ↵ is the kth eigenvalue ⇤

k

of the buckling problem (2.11), we immediately

deduce that the vanishing eigenvalue of problem (1.1) is exactly the kth one �
k

, and

the multiplicity will be the same of ⇤

k

.

3. Connection to the Robin Laplacian. Even though there are no simple

relations between the Laplacian and the Bilaplacian in general (apart from the Navier

problem (4.1)), if we consider the generic situation of problem (1.1) in the ball in RN

with ↵ 2 R, we can draw a very precise connection to the Robin Laplacian.

To this end, we recall that the Robin problem for the Laplace operator is as

follows:

(3.1)

⇢

��u = �u in ⌦,
@u

@⌫

+ �u = 0 on @⌦.

For any real value of �, the corresponding spectrum consists of a nondecreasing se-

quence of eigenvalues with finite multiplicities diverging to plus infinity. In particu-

lar, for positive values of � the eigenvalues are all strictly positive, while for � = 0

the Robin problem (3.1) becomes the Neumann problem. It is also known that, as

� ! +1, problem (3.1) converges to the Dirichlet problem for the Laplace operator,

namely

(3.2)

⇢

��u = �u in ⌦,
u = 0 on @⌦,

whose eigenvalues we will denote by

0 < �1  �2  · · · ! +1.

We recall that the eigenfunctions of (3.1) on a ball can be sorted out into three

categories (cf. section 2):

i. if the eigenvalue � is positive, the eigenfunction is of the form

r1�
N

2 J
k+N

2 �1(r
p
�)S

k

(✓),

and eigenvalues are solutions of

✓

k

R
+ �

◆

J
k+N

2 �1(R
p
�) =

p
�J

k+N

2
(R

p
�);

ii. if the eigenvalue � is negative, the eigenfunction is of the form

r1�
N

2 I
k+N

2 �1(r
p
��)S

k

(✓),

and eigenvalues are solutions of

✓

k

R
+ �

◆

I
k+N

2 �1(R
p
��) = �

p
��I

k+N

2
(R

p
��);

iii. if the eigenvalue � is zero, the eigenfunction is of the form rkS
k

(✓), and in

particular this occurs when � = � k

R

.
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At this point, it is clear that any eigenfunction of the clamped plate problem (1.1)

on the ball can be thought of as the sum of two di↵erent eigenfunctions of the Robin

problem for the Laplacian (3.1). A first condition that these two Robin eigenfunctions

have to satisfy is that their spherical parts coincide. This implies that they must come

from two di↵erent eigenvalues; in particular, we have that these two eigenvalues are

↵+ and ↵�, and the multiplicities must coincide. Furthermore, such eigenfunctions

must have the same index ⌫ = k +

N

2 � 1 in their Bessel function part. Let us call

v1, v2 two such eigenfunctions (with associated eigenvalues �1,�2), and let

v
j

(r, ✓) = vR
j

(r)S(✓);

i.e., we denote by vR
j

the radial part. Since we want the boundary conditions in the

clamped plate problem (1.1) to be satisfied, the only way to combine v1 and v2 is to

set

(3.3) u = vR1 (R)v2 � vR2 (R)v1,

as can be easily checked from the boundary conditions in the Robin problem for

the Laplace operator (3.1). In particular, v1 and v2 must be Robin eigenfunctions

associated with the same parameter �. As for the equation, we observe that

�

2v
j

+ ↵�v
j

= (�2
j

� ↵�
j

)v
j

and the equality �2
1 � ↵�1 = �2

2 � ↵�2 is naturally satisfied since

(3.4) ↵ = ↵+ + ↵� = �1 + �2, � = �↵+↵� = ��1�2.

On the other hand, letting � go to infinity we get that, for specific values of ↵
and �, we should consider eigenvalues of the Dirichlet Laplacian (3.2) instead. From

the literature (see, e.g., [8] and the references therein, and also [15] for a study of the

first two Robin eigenvalues), we know that all the analytical branches related to the

same Bessel function J
k+N

2 �1 (I
k+N

2 �1 when the eigenvalue is negative, rk if zero)

can be continued at � = 1 generating a function which wraps around R infinitely

many times. If we call �
k,j

(�) the jth eigenvalue associated with J
k+N

2 �1, then the

analytical branches of eigenvalues of problem (1.1) are given by

(3.5) � �
k,j

(�)�
k,j+t

(�)

for some t 2 N, where the parameter j is of no relevance here since any time � reaches

infinity j has to be replaced by j + 1 as

�
k,j

= �
k,j

(+1) = �
k,j+1(�1),

where �
k,j

is the jth eigenvalue of the Dirichlet problem for the Laplace opera-

tor (3.2) associated with J
k+N

2 �1. In particular, di↵erent branches of eigenvalues

of the clamped plate problem (1.1) associated with the Bessel index k +

N

2 � 1 are

indexed by the parameter t in (3.5). We remark that all the branches are of this

type, and hence no other branches are present. We sum up all these arguments in the

following.

Theorem 3.1. Let � 2 R, and let v1 and v2 be any two eigenfunctions of prob-
lem (3.1) in a ball B

R

(0) associated with the eigenvalues �1 and �2, respectively, and
having the same spherical part, namely

v
j

(x) = vR
j

(r)S(✓), j = 1, 2.
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Then the function defined in (3.3) is an eigenfunction of problem (1.1) in the ball
B

R

(0) associated with the eigenvalue � = ��1�2 and with the parameter ↵ = �1+�2.
This representation completely characterizes the analytic branch of the eigenvalue

� = ��1�2 (for ↵ 2 R) as the parameter � varies. In the limits � ! ±1, we
have that the eigenvalue � can be written as a product of eigenvalues of the Dirichlet
problem for the Laplace operator (3.2), and the corresponding eigenfunction can also
be written as a combination of eigenfunctions of problem (3.2).

In addition, all analytic branches of eigenvalues of the clamped plate problem (1.1)

can be represented in this fashion.

Theorem 3.1 allows us to study the behavior of the eigenvalues as ↵ = ±1.

Actually, for the case ↵ = �1, the convergence is well known in the literature for

any smooth domain (see, e.g., [14, p. 392]).

Theorem 3.2. Let w
↵

be the eigenfunction associated with �
k

(↵), and suppose
that there exists a point ↵0 2 R such that w

↵

2 C5
(⌦) for any ↵ < ↵0. Then

(3.6) �
k

(↵) = �↵�
k

+

p
�↵

Z

@⌦
|ru

k

|2 +O(1)

as ↵ ! �1, where u
k

is an eigenfunction of the Dirichlet problem for the Laplace
operator (3.2) associated with �

k

.

We recall that, thanks to classical regularity theory for elliptic operators (cf. [16]),

if ⌦ 2 C5,�
, then w

↵

2 C5,�
(⌦) for any ↵ 2 R and, in particular, balls satisfy the

hypotheses of Theorem 3.2. It is easily seen then that we can recover the first term

of the asymptotics (3.6) using the known asymptotics for the Robin problem (see [25]

and the references therein).

Regarding the asymptotics as ↵! +1, we compute it using the knowledge that

for any given branch when we get to � = 1 we obtain that both ↵ and � can be

expressed in terms of zeros of Bessel functions:

(3.7) ↵ =

j2
k+N

2 �1,m
+ j2

k+N

2 �1,m+t

R2
, � = �

j2
k+N

2 �1,m
⇥ j2

k+N

2 �1,m+t

R4
,

where j
⌫,m

is the mth zero of J
⌫

, whose asymptotic behavior is known to be (cf. [23,

formula (10.21.19)])

(3.8) j
⌫,m

⇠
✓

m+

⌫

2

� 1

4

◆

⇡ � 4⌫2 � 1

8

�

m+

⌫

2 � 1
4

�

⇡
+ o

✓

1

m2

◆

as m ! 1.

Let us now denote by  
m

and  
m+t

two eigenfunctions of the Dirichlet prob-

lem for the Laplace operator (3.2) associated with �
m

= R�2j2
k+N

2 �1,m
and �

m+t

=

R�2j2
k+N

2 �1,m+t

, respectively, having the same spherical part and normalized such

that  
m

+  
m+t

is an eigenfunction of the clamped plate problem (1.1) under condi-

tion (3.7). Then, using the Rayleigh quotient representation of �, we have

(3.9)

� = �↵
2

4

+

Z

B

R

h

�( 
m

+  
m+t

) +

↵

2

( 
m

+  
m+t

)

i2

Z

B

R

( 
m

+  
m+t

)

2

= �↵
2

4

+

⇣

�
m

� �
m+t

2

⌘2
.
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We recall that in this particular case we have ↵ = (j2
⌫,m

+ j2
⌫,m+t

)R�2
, where we set

⌫ = k +

N

2 � 1 for simplicity. We now compute the asymptotics for the remainder

in (3.9) and get

�

j2
⌫,m

� j2
⌫,m+t

�2

4R2
�

j2
⌫,m

+ j2
⌫,m+t

� ⇡

"

✓

m+

⌫

2

� 1

4

◆2

⇡2 �
✓

m+ t+
⌫

2

� 1

4

◆2

⇡2

#2

4R2

"

✓

m+

⌫

2

� 1

4

◆2

⇡2
+

✓

m+ t+
⌫

2

� 1

4

◆2

⇡2

#

⇡ t2⇡2

2R2 ,

telling us that � ⇠ �↵

2

4 +

↵t

2
⇡

2

2R2 + o(↵). Going further, we can get

�

j2
⌫,m

� j2
⌫,m+t

�2

4R4 �
�

j2
⌫,m

+ j2
⌫,m+t

�

t2⇡2

2R4

⇡ 1

4R4

"

✓

m+

⌫

2

� 1

4

◆2

⇡2 �
✓

m+ t+
⌫

2

� 1

4

◆2

⇡2

#2

� t2⇡4

2R4

"

✓

m+

⌫

2

� 1

4

◆2

+

✓

m+ t+
⌫

2

� 1

4

◆2

� 4⌫2 � 1

2⇡2

#

⇡ t2⇡2
(4⌫2 � 1� t2⇡2

)

4R4 ,

and hence we have the following.

Theorem 3.3. For any analytical branch of the eigenvalues of problem (1.1) on
a ball B

R

of radius R, we have

(3.10) � = �↵
2

4

+

↵t2⇡2

2R2
+

t2⇡2
(4⌫2 � 1� t2⇡2

)

4R4
+ o(1)

as ↵! +1, where ⌫ = k+ N

2 � 1 is the index of the associated Bessel functions, and
t is the parameter introduced in (3.5).

We observe that, even if at a first glance the presence of the parameter t may

seem unnatural, it may be compared, for example, with the ordering number for

zeros of Bessel functions j
⌫,k

. From this perspective, it is natural that it appears in

formula (3.10).

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. In the case of a general domain ⌦, we shall denote the

radius of the largest inscribed ball and that of the smallest ball containing ⌦ by

R
i

, R
c

, respectively. By the inclusion properties for problem (1.1), we know that

any eigenvalue of ⌦ is bounded from above and from below by the corresponding

eigenvalues of the inscribed and circumscribed balls, respectively. This immediately

proves (1.3). For higher eigenvalues, it will, in general, be di�cult to determine the

precise order of each eigenvalue, but in the case of the first eigenvalue it is possible to

identify the corresponding branch, namely that obtained by making t = 1 and k = 0,

and in turn obtain the following (asymptotic) expression:

�↵
2

4

+

↵⇡2

2R2
c

. �1(⌦) . �↵
2

4

+

↵⇡2

2R2
i

,
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which implies (1.4).

4. The Navier problem. We now turn our attention to the following eigenvalue

problem:

(4.1)

⇢

�

2u+ ↵�u = �u in ⌦,
u = �u = 0 on @⌦

for any ↵ 2 R. We immediately notice the resemblance of the Navier problem (4.1)

with problem (1.1), as its weak formulation reads as

(4.2)

Z

⌦
�u��� ↵rur� = �

Z

⌦
u� 8� 2 H2

(⌦) \H1
0 (⌦),

the only di↵erence between this and (2.1) being the ambient space. In particular,

comparing the variational characterization (2.2) of the eigenvalues of problem (1.1)

with that of the eigenvalues of the Navier problem (4.1),

(4.3) �N
k

(⌦,↵) = min

V⇢H

2(⌦)\H

1
0 (⌦)

dimV=k

max

0 6=u2V

R

⌦(�u)2 � ↵|ru|2
R

⌦ u2
,

yields

�D
k

(⌦,↵) � �N
k

(⌦,↵) 8k 2 N, 8↵ 2 R.

Now we want to compute eigenfunctions and eigenvalues of the Navier prob-

lem (4.1). We can of course proceed as for the Dirichlet case in section 2. However,

we observe that we can modify the problem as follows:

(4.4)

8

<

:

�

2u+ ↵�u+

↵2

4

u =

✓

�+

↵2

4

◆

u in ⌦,

u = �u+

↵
2

u = 0 on @⌦,

which tells us immediately that if the domain has the cone property, the Navier oper-

ator in (4.4) is the square of the translated Dirichlet Laplace operator �+

↵

2 (cf. [16]).

In particular, if we denote by �
k

the kth eigenvalue of the Dirichlet Laplacian (3.2),

we get that the spectrum of (4.1) is given by

(4.5)

�

�2
k

(⌦)� ↵�
k

(⌦)

 

k

for any ↵ 2 R and for any (smooth enough) domain ⌦. We remark that, for ↵ < 0

(actually, for ↵ < 2�1), we have

�N
k

(↵) = �2
k

� ↵�
k

for any k, while on the other hand we actually have intersections of the branches (the

intersection points will depend on ⌦). However, we can still say that

�N1 (↵) = min

k

{�2
k

� ↵�
k

} = min

k

n⇣

�2
k

� ↵

2

⌘2o

� ↵2

4

� �↵
2

4

,

that is,

(4.6) �D
k

(↵) � �N
k

(↵) � �N1 (↵) � �↵
2

4

8↵ 2 R.
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Theorem 4.1. Let ⌦ be a bounded open set in RN with the cone property. Then,
for any k 2 N,

(4.7) �N
k

(↵) = �↵
2

4

+ o(↵2
)

as ↵! +1. Moreover,

(4.8) �N1 (↵) = �↵
2

4

+ o(↵)

as ↵! +1.

Proof. Equality (4.7) easily follows from the inequality chain (4.6) coupled with

the asymptotic expansion (1.3).

As for (4.8), we first observe that

�N1 (↵) = �2
k

� ↵�
k

for �
k�1 + �

k

 ↵  �
k

+ �
k+1,

and for the choice ↵ = 2�
k

we have

(4.9) �N1 (↵) = ��2
k

= �↵
2

4

.

This alone is not enough to prove the asymptotic behavior. However, we know that

�N1 (↵) is a polygonal line and that each and every segment is tangent to the asymptotic

curve (thanks to (4.9)). It is thus enough to show that the vertices have the same

asymptotic behavior, i.e., the points ↵ = �
k

+ �
k+1 for which

�N1 (↵) = ��
k

�
k+1

or, equivalently,

�N1 (↵)� ↵2

4

=

(�
k+1 � �

k

)

2

4

;

therefore, we have to show that

(4.10)

(�
k+1 � �

k

)

2

�
k+1 + �

k

! 0 as k ! 1.

To this end, we recall the Weyl asymptotics for the Dirichlet eigenvalue problem for

the Laplacian (3.2), namely

(4.11) �
k

= C1k
2
N

+ C2k
1
N

+ o(k
1
N

) as k ! 1,

where C1 and C2 are (known) constants depending only on ⌦ and the dimension N .

From the binomial Taylor expansion

(k + 1)

�

= k� + �k��1
+ o(k��1

) as k ! 1,

we have

(4.12)

(�
k+1 � �

k

)

2

�
k+1 + �

k

=

(

2C1

N

k
2
N

�1
+

C2

N

k
1
N

�1
+ o(k

1
N

))

2

2C1k
2
N

+ o(k
2
N

)

,

which clearly goes to zero for N larger than one.
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Remark 4.2. If the domain is not bounded, it is still possible to prove (4.8) with-

out using the asymptotics (1.3) while following the same strategy we used in the

previous proof. In particular, in order to get the term �↵

2

4 , it su�ces to show that

(�
k

+ �
k+1)

2

�
k

�
k+1

! 4 as k ! 1,

which follows from the equality

(�
k

+ �
k+1)

2

�
k

�
k+1

=

�
k

�
k+1

+

�
k+1

�
k

+ 2

and the fact that the ratio of consecutive eigenvalues converges to 1, thanks to Weyl’s

asymptotics (4.11).

Also, it is clear from (4.12) that the term o(↵) in (4.8) is sharp since a di↵erent

exponent in the denominator in the limit (4.10) would not go to zero as k ! 1.

Remark 4.3. We observe that the behavior of the clamped plate problem (1.1)

and that of the Navier problem (4.1) are substantially di↵erent. On the one hand,

from the asymptotics (3.10) we have that the branches of eigenvalues of the clamped

plate problem (1.1) will stop intersecting for some su�ciently large value of ↵, at
least in the case of balls where the parameters t and k provide a clear ordering of the

branches, so that it is in principle possible to see which branch will eventually be the

kth eigenvalue. On the other hand, we know a priori that the branches of eigenvalues

of the Navier problem (4.1) will have an infinite number of intersections, making it

quite complicated to decide which is the kth eigenvalue. In particular, the knowledge

of the behavior of each individual branch does not provide su�cient information on

the asymptotics of the eigenvalues. Similarly, even though the eigenspaces do not

depend on ↵, that associated with the kth eigenvalue will keep on changing, creating

a strange phenomenon of nonconvergence.

5. Shape derivatives. We will now consider the problem of finding extremal

domains for the kth eigenvalue of problem (1.1), namely the following.

Problem 1. Determine

�⇤
k

(↵) = inf

⌦⇢Rn

{�
k

(⌦,↵) : |⌦| = 1} .

We observe that proving existence for Problem 1 within a specific class of domains

can be quite di�cult and, to the best of our knowledge, there are no results available

in general. To gauge the di�culties involved, we refer the reader to [7] for a survey

on existence results for the Laplacian case, for which it is still not known whether

existence holds within the class of open sets.

We will focus now on Problem 1 with k = 1. We begin by deriving the formula

for the Hadamard shape derivative of an eigenvalue of (1.1). Note that the formula in

the case ↵ = 0 was already derived in a general setting and for multiple eigenvalues;

see [10, 24]. We also refer the reader to [9] and the references therein for a complete

discussion on Hadamard formulas for the biharmonic operator, also in the case ↵ 6= 0.

Nevertheless, for the sake of simplicity we show here how to derive it in our specific

case.

Consider an application  (t) such that  : t 2 [0, T [! W 1,1
(RN ,RN

) is di↵er-

entiable at 0 with  (0) = I,  0
(0) = V , where W 1,1

(RN ,RN

) is the set of bounded
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Lipschitz maps from RN

into itself, I is the identity, and V is a given deformation

field.

We will use the notation ⌦

t

=  (t)(⌦) for a given set ⌦, �
n

(t) := �
n

(⌦

t

,↵), u
t

is

an associated eigenfunction with unitary L2
norm, and u0

will denote the derivative

of u
t

at t = 0. Moreover, we assume that �
n

(0) is simple.

It is well known (see, e.g., [13]) that if we define

J(t) =

Z

⌦
t

y(t, x)dx

for some function y, then the Hadamard shape derivative is given by

(5.1) J 0
(0) =

Z

⌦

@y

@t
(0, x)dx+

Z

@⌦
y(0, x)V · ⌫ ds

x

.

As a consequence, we have the following.

Theorem 5.1. Let ⌦ be a bounded open set of class C4. The Hadamard shape
derivative for a simple eigenvalue � of problem (1.1) with corresponding eigenfunction
u is given by

(5.2) �0(0) = �
Z

@⌦

✓

@2u

@⌫2

◆2

V · ⌫ ds
x

.

Proof. We have

(5.3) �(t) =

Z

⌦
t

(�u
t

)

2 � ↵ |ru
t

|2 dx,

and the eigenfunction is normalized:

(5.4)

Z

⌦
t

u2
t

dx = 1.

The function u0
can be calculated by solving the following boundary value problem

(cf. [17, 18]):

(5.5)

8

>

>

>

>

<

>

>

>

>

:

�

2u0
+ ↵�u0

= �0u+ �u0
in ⌦,

u0
= 0 on @⌦,

@u0

@⌫
= �@

2u
@⌫2

(V · ⌫) on @⌦,
R

⌦ uu0dx = 0.

Since the case ↵ = 0 can be recovered from [24] (and can be done similarly to

what follows), we assume ↵ 6= 0 and the eigenvalue equation can be written as

�u =

�u

↵
� �

2u

↵
,
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so that we have

Z

⌦
ruru0dx =

Z

@⌦
u0 @u

@⌫
ds

x

�
Z

⌦
u0
�u dx

= �
Z

⌦
u0

✓

�u

↵
� �

2u

↵

◆

dx

=

1

↵

✓

Z

@⌦
u0 @(�u)

@⌫
ds

x

�
Z

⌦
ru0r (�u)

◆

dx

= � 1

↵

✓

Z

@⌦
�u

@u0

@⌫
ds

x

�
Z

⌦
�u �u0dx

◆

= � 1

↵

Z

@⌦
�u

✓

�@
2u

@⌫2

◆

V · ⌫ ds
x

+

1

↵

Z

⌦
�u �u0dx

=

1

↵

Z

@⌦
�u

✓

@2u

@⌫2

◆

V · ⌫ ds
x

+

1

↵

Z

⌦
�u �u0dx.(5.6)

Applying now formula (5.1) to (5.3) and using (5.6), we obtain

�0(0) = 2

Z

⌦
�u�u0 � ↵ruru0dx+

Z

@⌦
(�u)2V · ⌫ ds

x

= 2

Z

⌦
�u�u0dx� 2↵

Z

⌦
ruru0dx+

Z

@⌦
(�u)2V · ⌫ ds

x

= 2

Z

⌦
�u�u0dx+ 2

Z

@⌦
�u

✓

�@
2u

@⌫2

◆

V · ⌫ ds
x

� 2

Z

⌦
�u �u0dx+

Z

@⌦
(�u)2V · ⌫ ds

x

=

Z

@⌦

✓

�2

@2u

@⌫2
�u+ (�u)2

◆

V · ⌫ ds
x

.

The proof is concluded once we observe that u 2 H4
(⌦) (cf. [16]), and since u =

@u

@⌫

= 0

on @⌦, we have that

�u =

@2u

@⌫2
on @⌦.

Remark 5.2. Using formula (5.2), we may try to attack Problem 1 via the La-

grange Multiplier Theorem. Since the constraint here is |⌦| = 1, we obtain the

following condition:

(5.7)

@2u

@⌫2
= constant on @⌦.

Note that condition (5.7) then has to be added to problem (1.1), yielding an overde-

termined problem resembling the Serrin problem (see [27]). However, problem (1.1)

coupled with condition (5.7) is a more di�cult problem, and the only partial result

available in the literature can be found in [12].

It is worth observing that solving the overdetermined problem (1.1), (5.7) is not

equivalent to solving Problem 1: in fact, the former provides just a critical point,

which may be only a local minimizer, or even a local maximizer. Interestingly enough,

though, eigenfunctions on the ball always satisfy condition (5.7). For a more detailed

analysis of this fact, we refer the reader to [9, 10].
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6. Numerical methods.

6.1. Numerical solution of the eigenvalue problem. In this section, we will

describe a numerical method for solving (1.1).

A fundamental solution �

�

of the partial di↵erential equation of the eigenvalue

problem (1.1) is given by (see, e.g., [20])

(6.1)

�

�

(x) =

i

✓

H
(1)
0

✓

i
q

1

2

(

p
↵2

+ 4�� ↵)|x|
◆

�H
(1)
0

✓

q

1

2

(

p
↵2

+ 4�+ ↵)|x|
◆◆

4

p
↵2

+ 4�
,

where H
(1)
0 is a Hankel function of the first kind.

We will consider particular solutions of the partial di↵erential equation of the

eigenvalue problem (1.1) by defining the boundary integral operators (for x 2 ⌦)

u(x) =

Z

�̂
�

�

(x� y)'(y)ds
y

+

Z

�̂
@
⌫

y

�

�

(x� y) (y) ds
y

,

where

ˆ

� is an artificial boundary that surrounds @⌦ (see, e.g., [1, 3]), and ' and

 are densities. The numerical approximation of an arbitrary solution of the partial

di↵erential equation of the eigenvalue problem (1.1) can be justified by density results;

see, e.g., [1, 2]. Moreover, we will assume that

ˆ

� does not intersect

¯

⌦. Thus, we can

discretize the boundary integral operators by considering the linear combinations

(6.2) u
m

(x) =

m

X

j=1

↵
m,j

�

�

(x� y
m,j

) +

m

X

j=1

�
m,j

@
⌫

y

m,j

�

�

(x� y
m,j

),

where y
m,j

are some points on

ˆ

�. Note that the functions u
m

are particular solutions

of the partial di↵erential equation involved in the eigenvalue problem (1.1) and the

coe�cients can be determined by fitting the boundary conditions of the problem.

We consider some collocation points x1, . . . , xm

, (almost) uniformly distributed on

@⌦, and impose the boundary conditions of the problem which leads to the (2m)⇥(2m)

system

(6.3)

8

>

>

>

>

<

>

>

>

>

:

0 = u
m

(x
i

) =

m

X

j=1

↵
m,j

�

�

(x
i

� y
m,j

) +

m

X

j=1

�
m,j

@
⌫

y

m,j

�

�

(x
i

� y
m,j

),

0 = @
⌫

x

i

u
m

(x
i

) =

m

X

j=1

↵
m,j

@
⌫

x

i

�

�

(x
i

� y
m,j

) +

m

X

j=1

�
m,j

@
⌫

x

i

@
⌫

y

m,j

�

�

(x
i

� y
m,j

).

We will consider the choice for source points y
m,j

described in [1], assume that

⌫
y

m,j

= ⌫
x

j

, and denote this vector simply by ⌫
j

. Using the notation d
i,j

= x
i

� y
m,j

,

the system (6.3) can be rewritten as

(6.4)

8

>

>

>

>

<

>

>

>

>

:

0 =

m

X

j=1

↵
m,j

�

�

(d
i,j

) +

m

X

j=1

�
m,j

(⌫
j

·r�
�

(d
i,j

)) ,

0 =

m

X

j=1

↵
m,j

(⌫
i

·r�
�

(d
i,j

)) +

m

X

j=1

�
m,j

(⌫
i

·r (⌫
j

·r�
�

(d
i,j

))) .

The approximations of the eigenvalues can be calculated by adapting the Betcke–

Trefethen method (see [6]) to this context. We consider p points z1, z2, . . . , zp, ran-
domly chosen in ⌦, and define the following six blocks:



CLAMPED PLATES UNDER LARGE COMPRESSION 1887

A(�) = [�

�

(d
i,j

)]

m⇥m

, B(�) = [⌫
j

·r�
�

(d
i,j

)]

m⇥m

,

C(�) = [⌫
i

·r�
�

(d
i,j

)]

m⇥m

, D(�) = [⌫
i

·r (⌫
j

·r�
�

(d
i,j

))]

m⇥m

,

E(�) =
h

�

�

(

˜d
i,j

)

i

p⇥m

, F (�) =
h

⌫
j

·r�
�

(

˜d
i,j

)

i

p⇥m

,

where

˜d
i,j

= z
i

� y
m,j

. Then we define the matrix

M(�) =

2

4

A(�) B(�)
C(�) D(�)
E(�) F (�)

3

5 ,

compute the QR decomposition of M(�), and calculate the minimal eigenvalue of

the first (2m) ⇥ (2m) block of the matrix M(�) that will be denoted by �1(�). The

approximations for the eigenvalues of problem (1.1) are the values �, for which �1(�) ⇡
0.

6.2. Numerical shape optimization. In this section, we will consider Prob-

lem 1 among general simply connected planar domains, whose boundary can be

parametrized by

@⌦ = {(�1(t),�2(t)) : t 2 [0, 2⇡[ }

for some continuous and (2⇡)-periodic functions �1 and �2. We will consider the

(truncated) Fourier expansions

�1(t) ⇡ �1(t) =
P

X

j=0

a
(1)
j

cos(jt) +
P

X

j=1

b
(1)
j

sin(jt)

and

�2(t) ⇡ �2(t) =

P

X

j=0

a
(2)
j

cos(jt) +

P

X

j=1

b
(2)
j

sin(jt)

for a su�ciently large P 2 N, and the optimization procedure consists in finding

optimal coe�cients a
(1)
j

, b
(1)
j

, a
(2)
j

, b
(2)
j

. The optimization is performed by a gradient-

type method, using the Hadamard shape derivative given by Theorem 5.1 to calculate

the derivative of the eigenvalue with respect to perturbations of the coe�cients a
(1)
j

,

b
(1)
j

, a
(2)
j

, b
(2)
j

.

6.3. Numerical results. In this section, we present the main results that we

gathered with our numerical procedure for solving Problem 1.

As was mentioned in the Introduction, each of the eigenvalue curves �
k

(↵) is made

up of analytic eigenvalue branches which intersect each other. We illustrate this fact

in Figure 1. As was shown in Theorem 1.1, all the eigenvalues have the following

asymptotic behavior:

�
k

(⌦,↵) = �↵
2

4

+ o(↵2
).

Thus, in order to produce more convenient pictures, instead of plotting the first

eigenvalues as functions of ↵, we will extract the first term of the expansion, which is

the same for all eigenvalues; i.e., in Figure 1, we plot the quantities

�
k

(⌦,↵) +
↵2

4

, k = 1, 2, . . . , 10,
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for a disk of unit area and similar results for an ellipse with unit area and eccentricity

equal to

p
3/2.

Figure 2 shows the curve of the quantity �⇤1(↵) +
↵

2

4 . We can observe several

branches corresponding to di↵erent types of minimizers. Some of them, obtained for

↵ = 110, 170, 230, 400, are plotted in Figure 3. The optimal eigenvalue �⇤1(↵) is the

minimum among the values obtained for all the branches. We calculated the critical

value of ↵, which is the maximal value of ↵ for which the ball is the minimizer, and

obtained ↵? ⇡ 102.23. In [4], it was proved that the ball is the minimizer for ↵ 2 [0, a]
and for some a < ⇤, where ⇤ = ⇡j21,1 ⇡ 12.0377 is the first buckling eigenvalue of the

disk with unit area. Our numerical results suggest that actually the result may be true

for a larger range of values of ↵, and we conjecture that the ball is the minimizer for

↵ 2 [0,↵?

]. On the other hand, we have numerical evidence to support the conjecture

that for ↵ > ↵?

the ball is no longer the minimizer. For instance, for ↵ = 110, the first

eigenvalue of the ball of unit area can be directly calculated by solving (2.9) and is

equal to –1622.16613. . . . In Table 1, we show some numerical approximations for the

first eigenvalue of the minimizer that we obtained with our algorithm when ↵ = 110,

which is plotted in Figure 3 for di↵erent values of m. These results suggest that

the first eigenvalue of this domain is equal to –1786.35377. . . , which is significantly

smaller than the first eigenvalue of the disk.

150 200 250 300
1000

1500

2000

2500

3000

3500

α

λ 1∗ (α
)+
α

2
/4

Fig. 2. The quantity �⇤

1

(↵) + ↵2

4

for ↵ 2 [110, 320].

In Figure 4, we plot the eigenfunctions associated with the first three eigenvalues

of the optimizers of �1, obtained for ↵ = 110, 170, 230. In this work, we considered

just the optimization of the first eigenvalue. However, we observed that, besides the

fact that the eigenfunction associated with the first eigenvalue changes sign, it also

has a di↵erent number of nodal domains, depending on the parameter ↵. Moreover,

“similar” eigenfunctions appear associated with eigenvalues of di↵erent orders. For

instance, the eigenfunction associated with the first eigenvalue for ↵ = 110 is anti-

symmetric with respect to the first axis. However, the eigenfunction associated with

the first eigenvalue for ↵ = 170 is symmetric with respect to the first axis, and the

first antisymmetric eigenfunction with respect to the first axis is associated not with

the first eigenvalue but with the second eigenvalue.

Figure 5 shows a zoom of the boundary of the optimizer obtained numerically

for ↵ = 110 in a neighborhood of the re-entrant part of the boundary. Note that the
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Fig. 3. Minimizers of �
1

(↵) for ↵ = 110, 170, 230, 400.

Table 1
Numerical approximations obtained for the first eigenvalue of the minimizer when ↵ = 110 for

di↵erent values of m.

m ˜�
1

1000 –1786.3537774

1500 –1786.3537779

1800 –1786.3537762

2000 –1786.3537753

boundary of the domains considered in the optimization procedure was parameterized

by a (truncated) Fourier expansion. In particular, the domains considered are always

smooth and it is not clear how to obtain information on the regularity of the boundary

of the optimizer from this. In particular, it is not possible to deduce whether this

corresponds to a smooth boundary, a corner, or even a cusp.
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Fig. 5. Zoom of the boundary of the optimizer obtained for ↵ = 110 close to the re-entrant region.
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