We prove that the distributional limit of the normalised number of returns to
small neighbourhoods of periodic points of non-uniformly hyperbolic dynamical
systems is compound Poisson. The returns to small balls around a fixed point in
the phase space correspond to the occurrence of rare events, or exceedances of
high thresholds, so that there is a connection between the laws of Return Times
Statistics and Extreme Value Laws. The fact that the fixed point in the phase
space is a repelling periodic point implies that there is a tendency for the
exceedances to appear in clusters whose average sizes is given by the Extremal
Index, which depends on the expansion of the system at the periodic point.
We recall that for generic points, the exceedances, in the limit, are
singular and occur at Poisson times. However, around periodic points, the
picture is different: the respective point processes of exceedances converge to
a compound Poisson process, so instead of single exceedances, we have entire
clusters of exceedances occurring at Poisson times with a geometric
distribution ruling its multiplicity.
The systems to which our results apply include: general piecewise expanding
maps of the interval (Rychlik maps), maps with indifferent fixed points
(Manneville-Pomeau maps) and Benedicks-Carleson quadratic maps.Comment: To appear in Communications in Mathematical Physic