129 research outputs found

    Optical structure and function of the white filamentary hair covering the edelweiss bracts

    Full text link
    The optical properties of the inflorescence of the high-altitude ''Leontopodium nivale'' subsp. ''alpinum'' (edelweiss) is investigated, in relation with its submicrometer structure, as determined by scanning electron microscopy. The filaments forming the hair layer have been found to exhibit an internal structure which may be one of the few examples of a photonic structure found in a plant. Measurements of light transmission through a self-supported layer of hair pads taken from the bracts supports the idea that the wooly layer covering the plant absorbs near-ultraviolet radiation before it reaches the cellular tissue. Calculations based on a photonic-crystal model provides insight on the way radiation can be absorbed by the filamentary threads.Comment: 9 pages, 13 figures. Published pape

    IMPACT OF GEOLOCATION DATA ON AUGMENTED REALITY USABILITY: A COMPARATIVE USER TEST

    Get PDF
    While the use of location-based augmented reality (AR) for education has demonstrated benefits on participants’ motivation, engagement, and on their physical activity, geolocation data inaccuracy causes augmented objects to jitter or drift, which is a factor in downgrading user experience. We developed a free and open source web AR application and conducted a comparative user test (n = 54) in order to assess the impact of geolocation data on usability, exploration, and focus. A control group explored biodiversity in nature using the system in combination with embedded GNSS data, and an experimental group used an external module for RTK data. During the test, eye tracking data, geolocated traces, and in-app user-triggered events were recorded. Participants answered usability questionnaires (SUS, UEQ, HARUS).We found that the geolocation data the RTK group was exposed to was less accurate in average than that of the control group. The RTK group reported lower usability scores on all scales, of which 5 out of 9 were significant, indicating that inaccurate data negatively predicts usability. The GNSS group walked more than the RTK group, indicating a partial effect on exploration. We found no significant effect on interaction time with the screen, indicating no specific relation between data accuracy and focus. While RTK data did not allow us to better the usability of location-based AR interfaces, results allow us to assess our system’s overall usability as excellent, and to define optimal operating conditions for future use with pupils

    Towards barcode markers in Fungi: an intron map of Ascomycota mitochondria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A standardized and cost-effective molecular identification system is now an urgent need for Fungi owing to their wide involvement in human life quality. In particular the potential use of mitochondrial DNA species markers has been taken in account. Unfortunately, a serious difficulty in the PCR and bioinformatic surveys is due to the presence of mobile introns in almost all the fungal mitochondrial genes. The aim of this work is to verify the incidence of this phenomenon in Ascomycota, testing, at the same time, a new bioinformatic tool for extracting and managing sequence databases annotations, in order to identify the mitochondrial gene regions where introns are missing so as to propose them as species markers.</p> <p>Methods</p> <p>The general trend towards a large occurrence of introns in the mitochondrial genome of Fungi has been confirmed in Ascomycota by an extensive bioinformatic analysis, performed on all the entries concerning 11 mitochondrial protein coding genes and 2 mitochondrial rRNA (ribosomal RNA) specifying genes, belonging to this phylum, available in public nucleotide sequence databases. A new query approach has been developed to retrieve effectively introns information included in these entries.</p> <p>Results</p> <p>After comparing the new query-based approach with a blast-based procedure, with the aim of designing a faithful Ascomycota mitochondrial intron map, the first method appeared clearly the most accurate. Within this map, despite the large pervasiveness of introns, it is possible to distinguish specific regions comprised in several genes, including the full NADH dehydrogenase subunit 6 (ND6) gene, which could be considered as barcode candidates for Ascomycota due to their paucity of introns and to their length, above 400 bp, comparable to the lower end size of the length range of barcodes successfully used in animals.</p> <p>Conclusion</p> <p>The development of the new query system described here would answer the pressing requirement to improve drastically the bioinformatics support to the DNA Barcode Initiative. The large scale investigation of Ascomycota mitochondrial introns performed through this tool, allowing to exclude the introns-rich sequences from the barcode candidates exploration, could be the first step towards a mitochondrial barcoding strategy for these organisms, similar to the standard approach employed in metazoans.</p

    Phylogeny of rock-inhabiting fungi related to Dothideomycetes

    Get PDF
    The class Dothideomycetes (along with Eurotiomycetes) includes numerous rock-inhabiting fungi (RIF), a group of ascomycetes that tolerates surprisingly well harsh conditions prevailing on rock surfaces. Despite their convergent morphology and physiology, RIF are phylogenetically highly diverse in Dothideomycetes. However, the positions of main groups of RIF in this class remain unclear due to the lack of a strong phylogenetic framework. Moreover, connections between rock-dwelling habit and other lifestyles found in Dothideomycetes such as plant pathogens, saprobes and lichen-forming fungi are still unexplored. Based on multigene phylogenetic analyses, we report that RIF belong to Capnodiales (particularly to the family Teratosphaeriaceae s.l.), Dothideales, Pleosporales, and Myriangiales, as well as some uncharacterised groups with affinities to Dothideomycetes. Moreover, one lineage consisting exclusively of RIF proved to be closely related to Arthoniomycetes, the sister class of Dothideomycetes. The broad phylogenetic amplitude of RIF in Dothideomycetes suggests that total species richness in this class remains underestimated. Composition of some RIF-rich lineages suggests that rock surfaces are reservoirs for plant-associated fungi or saprobes, although other data also agree with rocks as a primary substrate for ancient fungal lineages. According to the current sampling, long distance dispersal seems to be common for RIF. Dothideomycetes lineages comprising lichens also include RIF, suggesting a possible link between rock-dwelling habit and lichenisation

    Outline of Fungi and fungus-like taxa

    Get PDF
    This article provides an outline of the classification of the kingdom Fungi (including fossil fungi. i.e. dispersed spores, mycelia, sporophores, mycorrhizas). We treat 19 phyla of fungi. These are Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. The placement of all fungal genera is provided at the class-, order- and family-level. The described number of species per genus is also given. Notes are provided of taxa for which recent changes or disagreements have been presented. Fungus-like taxa that were traditionally treated as fungi are also incorporated in this outline (i.e. Eumycetozoa, Dictyosteliomycetes, Ceratiomyxomycetes and Myxomycetes). Four new taxa are introduced: Amblyosporida ord. nov. Neopereziida ord. nov. and Ovavesiculida ord. nov. in Rozellomycota, and Protosporangiaceae fam. nov. in Dictyosteliomycetes. Two different classifications (in outline section and in discussion) are provided for Glomeromycota and Leotiomycetes based on recent studies. The phylogenetic reconstruction of a four-gene dataset (18S and 28S rRNA, RPB1, RPB2) of 433 taxa is presented, including all currently described orders of fungi

    Le patrimoine naturel et les paysages

    Full text link
    Le patrimoine, outil de développement territoria

    Thelopsis challenges the generic circumscription in the Gyalectaceae and brings new insights to the taxonomy of Ramonia

    No full text
    International audienceThe genus Thelopsis was classified in the family Stictidaceae but its systematic position has never been investigated by molecular methods. In order to determine its family placement and to test its monophyly, fungal DNA of recent collections of Thelopsis specimens was sequenced. Phylogenetic analyses using nuLSU, RPB2 and mtSSU sequences reveal that members of Thelopsis form a monophyletic group within the genus Gyalecta as currently accepted. The placement of Thelopsis, including the generic type T. rubella, within the genus Gyalecta challenges the generic circumscription of this group because Thelopsis is well recognized by the combination of morphological characters: perithecioid ascomata, well-developed periphysoids, polysporous asci and small, few-septate ellipsoid-oblong ascospores. The sterile sorediate Opegrapha corticola is also placed in the Gyalectaceae as sister species to Thelopsis byssoidea + T. rubella. Ascomata of O. corticola are illustrated for the first time and support its placement in the genus Thelopsis. The hypothesis that O. corticola might represent the sorediate fertile morph of T. rubella is not confirmed because the species is phylogenetically and morphologically distinct. Thelopsis is recovered as polyphyletic, with T. melathelia being placed as sister species to Ramonia. The new combinations Thelopsis corticola (Coppins P. James) Sanderson Ertz comb. nov. and Ramonia melathelia (Nyl.) Ertz comb. nov. are introduced and a new species of Gyalecta, G. amsterdamensis Ertz, is described from Amsterdam and Saint-Paul Islands, characterized by a sterile thallus with discrete soralia. Petractis luetkemuelleri and P. nodispora are accommodated in the new genus Neopetractis, differing from the generic type (P. clausa) by having a different phylogenetic position and a different photobiont. Francisrosea bicolor Ertz Sanderson gen. sp. nov. is described for a sterile sorediate lichen somewhat similar to Opegrapha corticola but having an isolated phylogenetic position as sister to a clade including Gyalidea praetermissa and the genera Neopetractis and Ramonia. Gyalecta farlowii, G. nidarosiensis and G. carneola are placed in a molecular phylogeny for the first time. The taxonomic significance of morphological characters in Gyalectaceae is discussed. Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the British Lichen Society
    corecore