210 research outputs found

    First report of Brenneria goodwinii, Gibbsiella quercinecans and Rahnella victoriana in declining oaks in France

    Get PDF
    Acute Oak Decline, Quercus petraea, Quercus robur Acute Oak Decline (AOD) is mediated by abiotic factors (temperature and precipitation) and triggered by insects (mainly the bark-boring beetle Agrilus biguttatus) and a complex of bacterial species (mainly Bren-neria goodwinii, Gibbsiella quercinecans and Rahnella victoriana) (Denman et al., 2017; Doonan et al., 2020). Given the extent of oak dieback and the prevalence of A. biguttatus in France (Saintonge & Goudet, 2020; Sallé et al., 2022), a preliminary study was done in five French forests to assess the prevalence of AOD symptoms (bleeding cortical lesions on the trunk associated with insect emergence holes and dieback) and to determine the bacteria associated with those symptoms. The mean prevalence of AOD symptoms was estimated at 37% arround 20 trees assessed in each of the five forests. Bark samples and, when possible, exudates were taken from lesions associated with insect emergence holes and/or cracks (Fig. 1). Bacterial isolations were made from 43 bark samples and 11 exudate samples by plating on three agar media (Luria, Gifu Anaerobic and Eosin Methylene Blue) and incubated at 22 • C for one to five days. Bacterial strains were identified by high-resolution melting (Brady et al., 2016) or 16S rRNA sequencing (Denman et al., 2016). The sequenced strains had 100% identity with sequences of reference strains (GenBank Accession Nos. CP014137.1, CP014136.1 and NR_146847.1). The percentage of trees infected with G. quercinecans, B. goodwinii and R. victoriana was 21, 16 and 12, respectively. These AOD-associated bacteria were detected with a higher success rate in exudates (81%) than in bark (25%). Gibbsiella quercinecans and B. good-This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

    Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA

    Get PDF
    The manifestation of mitochondrial DNA (mtDNA) diseases depends on the frequency of heteroplasmy (the presence of several alleles in an individual), yet its transmission across generations cannot be readily predicted owing to a lack of data on the size of the mtDNA bottleneck during oogenesis. For deleterious heteroplasmies, a severe bottleneck may abruptly transform a benign (low) frequency in a mother into a disease-causing (high) frequency in her child. Here we present a high-resolution study of heteroplasmy transmission conducted on blood and buccal mtDNA of 39 healthy mother–child pairs of European ancestry (a total of 156 samples, each sequenced at ∼20,000× per site). On average, each individual carried one heteroplasmy, and one in eight individuals carried a disease-associated heteroplasmy, with minor allele frequency ≥1%. We observed frequent drastic heteroplasmy frequency shifts between generations and estimated the effective size of the germ-line mtDNA bottleneck at only ∼30–35 (interquartile range from 9 to 141). Accounting for heteroplasmies, we estimated the mtDNA germ-line mutation rate at 1.3 × 10−8 (interquartile range from 4.2 × 10−9 to 4.1 × 10−8) mutations per site per year, an order of magnitude higher than for nuclear DNA. Notably, we found a positive association between the number of heteroplasmies in a child and maternal age at fertilization, likely attributable to oocyte aging. This study also took advantage of droplet digital PCR (ddPCR) to validate heteroplasmies and confirm a de novo mutation. Our results can be used to predict the transmission of disease-causing mtDNA variants and illuminate evolutionary dynamics of the mitochondrial genome

    Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair.

    Get PDF
    Repair of double strand DNA breaks (DSBs) can result in gene disruption or gene modification via homology directed repair (HDR) from donor DNA. Altering cellular responses to DSBs may rebalance editing outcomes towards HDR and away from other repair outcomes. Here, we utilize a pooled CRISPR screen to define host cell involvement in HDR between a Cas9 DSB and a plasmid double stranded donor DNA (dsDonor). We find that the Fanconi Anemia (FA) pathway is required for dsDonor HDR and that other genes act to repress HDR. Small molecule inhibition of one of these repressors, CDC7, by XL413 and other inhibitors increases the efficiency of HDR by up to 3.5 fold in many contexts, including primary T cells. XL413 stimulates HDR during a reversible slowing of S-phase that is unexplored for Cas9-induced HDR. We anticipate that XL413 and other such rationally developed inhibitors will be useful tools for gene modification

    Identification of G1-Regulated Genes in Normally Cycling Human Cells

    Get PDF
    BACKGROUND: Obtaining synchronous cell populations is essential for cell-cycle studies. Methods such as serum withdrawal or use of drugs which block cells at specific points in the cell cycle alter cellular events upon re-entry into the cell cycle. Regulatory events occurring in early G1 phase of a new cell cycle could have been overlooked. METHODOLOGY AND FINDINGS: We used a robotic mitotic shake-off apparatus to select cells in late mitosis for genome-wide gene expression studies. Two separate microarray experiments were conducted, one which involved isolation of RNA hourly for several hours from synchronous cell populations, and one experiment which examined gene activity every 15 minutes from late telophase of mitosis into G1 phase. To verify synchrony of the cell populations under study, we utilized methods including BrdU uptake, FACS, and microarray analyses of histone gene activity. We also examined stress response gene activity. Our analysis enabled identification of 200 early G1-regulated genes, many of which currently have unknown functions. We also confirmed the expression of a set of genes candidates (fos, atf3 and tceb) by qPCR to further validate the newly identified genes. CONCLUSION AND SIGNIFICANCE: Genome-scale expression analyses of the first two hours of G1 in naturally cycling cells enabled the discovery of a unique set of G1-regulated genes, many of which currently have unknown functions, in cells progressing normally through the cell division cycle. This group of genes may contain future targets for drug development and treatment of human disease

    An empirical examination of factors associated with Game Transfer Phenomena severity

    Get PDF
    Game Transfer Phenomena (GTP) (i.e. altered perceptions, spontaneous thoughts and behaviors with game content) occur on a continuum from mild to severe. This study examined the differences between mild, moderate and severe levels of GTP. A total of 2,362 gamers’ participated in an online survey. The majority of gamers experienced mild levels of GTP. The factors significantly associated with severe levels of GTP were: (i) being students, (ii) being aged 18 to 22, (iii) being professional gamers, (iv) playing videogames every day in sessions of 6 hours or more, (iv) playing to escape from the real world, (v) recalling dreams always or very often, (vi) having a sleep disorder, mental disorder or reported dysfunctional gaming, and (vii) having experienced distress or dysfunction due to GTP. In addition, having used drugs and experiencing flashbacks as side-effects of drug use were significantly less likely to be reported by those with mild levels of GTP. In general, the findings suggest that those with higher levels of GTP share characteristics with profiles of gamers with dysfunctional gaming (e.g., problematic and/or addictive gaming)

    Meiotic Regulation of TPX2 Protein Levels Governs Cell Cycle Progression in Mouse Oocytes

    Get PDF
    Formation of female gametes requires acentriolar spindle assembly during meiosis. Mitotic spindles organize from centrosomes and via local activation of the RanGTPase on chromosomes. Vertebrate oocytes present a RanGTP gradient centred on chromatin at all stages of meiotic maturation. However, this gradient is dispensable for assembly of the first meiotic spindle. To understand this meiosis I peculiarity, we studied TPX2, a Ran target, in mouse oocytes. Strikingly, TPX2 activity is controlled at the protein level through its accumulation from meiosis I to II. By RNAi depletion and live imaging, we show that TPX2 is required for spindle assembly via two distinct functions. It controls microtubule assembly and spindle pole integrity via the phosphorylation of TACC3, a regulator of MTOCs activity. We show that meiotic spindle formation in vivo depends on the regulation of at least a target of Ran, TPX2, rather than on the regulation of the RanGTP gradient itself

    Distinct Functional Roles of β-Tubulin Isotypes in Microtubule Arrays of Tetrahymena thermophila, a Model Single-Celled Organism

    Get PDF
    <div><h3>Background</h3><p>The multi-tubulin hypothesis proposes that each tubulin isotype performs a unique role, or subset of roles, in the universe of microtubule function(s). To test this hypothesis, we are investigating the functions of the recently discovered, noncanonical β-like tubulins (BLTs) of the ciliate, <em>Tetrahymena thermophila</em>. <em>Tetrahymena</em> forms 17 distinct microtubular structures whose assembly had been thought to be based on single α- and β-isotypes. However, completion of the macronuclear genome sequence of <em>Tetrahymena</em> demonstrated that this ciliate possessed a β-tubulin multigene family: two synonymous genes (<em>BTU1</em> and <em>BTU2</em>) encode the canonical β-tubulin, BTU2, and six genes (<em>BLT1-6</em>) yield five divergent β-tubulin isotypes. In this report, we examine the structural features and functions of two of the BLTs (BLT1 and BLT4) and compare them to those of BTU2.</p> <h3>Methodology/Principal Findings</h3><p>With respect to BTU2, BLT1 and BLT4 had multiple sequence substitutions in their GTP-binding sites, in their interaction surfaces, and in their microtubule-targeting motifs, which together suggest that they have specialized functions. To assess the roles of these tubulins <em>in vivo</em>, we transformed <em>Tetrahymena</em> with expression vectors that direct the synthesis of GFP-tagged versions of the isotypes. We show that GFP-BLT1 and GFP-BLT4 were not detectable in somatic cilia and basal bodies, whereas GFP-BTU2 strongly labeled these structures. During cell division, GFP-BLT1 and GFP-BLT4, but not GFP-BTU2, were incorporated into the microtubule arrays of the macronucleus and into the mitotic apparatus of the micronucleus. GFP-BLT1 also participated in formation of the microtubules of the meiotic apparatus of the micronucleus during conjugation. Partitioning of the isotypes between nuclear and ciliary microtubules was confirmed biochemically.</p> <h3>Conclusion/Significance</h3><p>We conclude that <em>Tetrahymena</em> uses a family of distinct β-tubulin isotypes to construct subsets of functionally different microtubules, a result that provides strong support for the multi-tubulin hypothesis.</p> </div

    Sequential analysis of global gene expression profiles in immature and in vitro matured bovine oocytes: potential molecular markers of oocyte maturation

    Get PDF
    Abstract Background Without intensive selection, the majority of bovine oocytes submitted to in vitro embryo production (IVP) fail to develop to the blastocyst stage. This is attributed partly to their maturation status and competences. Using the Affymetrix GeneChip Bovine Genome Array, global mRNA expression analysis of immature (GV) and in vitro matured (IVM) bovine oocytes was carried out to characterize the transcriptome of bovine oocytes and then use a variety of approaches to determine whether the observed transcriptional changes during IVM was real or an artifact of the techniques used during analysis. Results 8489 transcripts were detected across the two oocyte groups, of which ~25.0% (2117 transcripts) were differentially expressed (p < 0.001); corresponding to 589 over-expressed and 1528 under-expressed transcripts in the IVM oocytes compared to their immature counterparts. Over expression of transcripts by IVM oocytes is particularly interesting, therefore, a variety of approaches were employed to determine whether the observed transcriptional changes during IVM were real or an artifact of the techniques used during analysis, including the analysis of transcript abundance in oocytes in vitro matured in the presence of α-amanitin. Subsets of the differentially expressed genes were also validated by quantitative real-time PCR (qPCR) and the gene expression data was classified according to gene ontology and pathway enrichment. Numerous cell cycle linked (CDC2, CDK5, CDK8, HSPA2, MAPK14, TXNL4B), molecular transport (STX5, STX17, SEC22A, SEC22B), and differentiation (NACA) related genes were found to be among the several over-expressed transcripts in GV oocytes compared to the matured counterparts, while ANXA1, PLAU, STC1and LUM were among the over-expressed genes after oocyte maturation. Conclusion Using sequential experiments, we have shown and confirmed transcriptional changes during oocyte maturation. This dataset provides a unique reference resource for studies concerned with the molecular mechanisms controlling oocyte meiotic maturation in cattle, addresses the existing conflicting issue of transcription during meiotic maturation and contributes to the global goal of improving assisted reproductive technology

    Amplified sinus-P-wave analysis predicts outcomes of cryoballoon ablation in patients with persistent and long-standing persistent atrial fibrillation: A multicentre study

    Get PDF
    IntroductionOutcomes of catheter ablation for non-paroxysmal atrial fibrillation (AF) remain suboptimal. Non-invasive stratification of patients based on the presence of atrial cardiomyopathy (ACM) could allow to identify the best responders to pulmonary vein isolation (PVI).MethodsObservational multicentre retrospective study in patients undergoing cryoballoon-PVI for non-paroxysmal AF. The duration of amplified P-wave (APW) was measured from a digitally recorded 12-lead electrocardiogram during the procedure. If patients were in AF, direct-current cardioversion was performed to allow APW measurement in sinus rhythm. An APW cut-off of 150 ms was used to identify patients with significant ACM. We assessed freedom from arrhythmia recurrence at long-term follow-up in patients with APW ≥ 150 ms vs. APW &lt; 150 ms.ResultsWe included 295 patients (mean age 62.3 ± 10.6), of whom 193 (65.4%) suffered from persistent AF and the remaining 102 (34.6%) from long-standing persistent AF. One-hundred-forty-two patients (50.2%) experienced arrhythmia recurrence during a mean follow-up of 793 ± 604 days. Patients with APW ≥ 150 ms had a significantly higher recurrence rate post ablation compared to those with APW &lt; 150 ms (57.0% vs. 41.6%; log-rank p &lt; 0.001). On a multivariable Cox-regression analysis, APW≥150 ms was the only independent predictor of arrhythmia recurrence post ablation (HR 2.03 CI95% 1.28–3.21; p = 0.002).ConclusionAPW duration predicts arrhythmia recurrence post cryoballoon-PVI in persistent and long-standing persistent AF. An APW cut-off of 150 ms allows to identify patients with significant ACM who have worse outcomes post PVI. Analysis of APW represents an easy, non-invasive and highly reproducible diagnostic tool which allows to identify patients who are the most likely to benefit from PVI-only approach
    corecore