211 research outputs found

    Detection of the Sgr A* activity at 3.8 and 4.8 microns with NACO

    Full text link
    L'-band (lambda=3.8 microns) and M'-band (lambda=4.8 microns) observations of the Galactic Center region, performed in 2003 at VLT (ESO) with the adaptive optics imager NACO, have lead to the detection of an infrared counterpart of the radio source Sgr A* at both wavelengths. The measured fluxes confirm that the Sgr A* infrared spectrum is dominated by the synchrotron emission of nonthermal electrons. The infrared counterpart exhibits no significant short term variability but demonstrates flux variations on daily and yearly scales. The observed emission arises away from the position of the dynamical center of the S2 orbit and would then not originate from the closest regions of the black hole.Comment: 5 pages, 3 figures, accepted in Astronomy & Astrophysic

    NACO/SAM observations of sources at the Galactic Center

    Full text link
    Sparse aperture masking (SAM) interferometry combined with Adaptive Optics (AO) is a technique that is uniquely suited to investigate structures near the diffraction limit of large telescopes. The strengths of the technique are a robust calibration of the Point Spread Function (PSF) while maintaining a relatively high dynamic range. We used SAM+AO observations to investigate the circumstellar environment of several bright sources with infrared excess in the central parsec of the Galaxy. For our observations, unstable atmospheric conditions as well as significant residuals after the background subtraction presented serious problems for the standard approach of calibrating SAM data via interspersed observations of reference stars. We circumvented these difficulties by constructing a synthesized calibrator directly from sources within the field-of-view. When observing crowded fields, this novel method can boost the efficiency of SAM observations because it renders interspersed calibrator observations unnecessary. Here, we presented the first NaCo/SAM images reconstructed using this method.Comment: 8 pages, 10 figures, proceedings of the conference "Astrophysics at High Angular Resolution" (AHAR-2011

    HST/NICMOS Paschen-alpha Survey of the Galactic Center: Overview

    Get PDF
    We have recently carried out the first wide-field hydrogen Paschen-alpha line imaging survey of the Galactic Center (GC), using the NICMOS instrument aboard the Hubble Space Telescope. The survey maps out a region of 2253 pc^2 around the central supermassive black hole (Sgr A*) in the 1.87 and 1.90 Micron narrow bands with a spatial resolution of 0.01 pc at a distance of 8 kpc. Here we present an overview of the observations, data reduction, preliminary results, and potential scientific implications, as well as a description of the rationale and design of the survey. We have produced mosaic maps of the Paschen-alpha line and continuum emission, giving an unprecedentedly high resolution and high sensitivity panoramic view of stars and photo-ionized gas in the nuclear environment of the Galaxy. We detect a significant number of previously undetected stars with Paschen-alpha in emission. They are most likely massive stars with strong winds, as confirmed by our initial follow-up spectroscopic observations. About half of the newly detected massive stars are found outside the known clusters (Arches, Quintuplet, and Central). Many previously known diffuse thermal features are now resolved into arrays of intriguingly fine linear filaments indicating a profound role of magnetic fields in sculpting the gas. The bright spiral-like Paschen-alpha emission around Sgr A* is seen to be well confined within the known dusty torus. In the directions roughly perpendicular to it, we further detect faint, diffuse Paschen-alpha emission features, which, like earlier radio images, suggest an outflow from the structure. In addition, we detect various compact Paschen-alpha nebulae, probably tracing the accretion and/or ejection of stars at various evolutionary stages.Comment: accepted for publication in MNRAS; a version of higher resolution images may be found at http://www.astro.umass.edu/~wqd/papers/hst/paper1.pd

    VLT/SPHERE deep insight of NGC 3603's core: Segregation or confusion?

    Full text link
    We present new near-infrared photometric measurements of the core of the young massive cluster NGC 3603 obtained with extreme adaptive optics. The data were obtained with the SPHERE instrument mounted on ESO Very Large Telescope, and cover three fields in the core of this cluster. We applied a correction for the effect of extinction to our data obtained in the J and K broadband filters and estimated the mass of detected sources inside the field of view of SPHERE/IRDIS, which is 13.5"x13.5". We derived the mass function (MF) slope for each spectral band and field. The MF slope in the core is unusual compared to previous results based on Hubble space telescope (HST) and very large telescope (VLT) observations. The average slope in the core is estimated as -1.06^{+0.26}_{-0.26} for the main sequence stars with 3.5 Msun < M < 120 Msun.Thanks to the SPHERE extreme adaptive optics, 814 low-mass stars were detected to estimate the MF slope for the pre-main sequence stars with 0.6 Msun< M < 3.5 Msun , Gamma = -0.54^{+0.11}_{-0.11} in the K-band images in two fields in the core of the cluster. For the first time, we derive the mass function of the very core of the NGC 3603 young cluster for masses in the range 0.6 - 120 Msun. Previous studies were either limited by crowding, lack of dynamic range, or a combination of both

    High-resolution polarimetry of Parsamian 21: revealing the structure of an edge-on FU Ori disc

    Get PDF
    We present the first high spatial resolution near-infrared direct and polarimetric observations of Parsamian 21, obtained with the VLT/NACO instrument. We complemented these measurements with archival infrared observations, such as HST/WFPC2 imaging, HST/NICMOS polarimetry, Spitzer IRAC and MIPS photometry, Spitzer IRS spectroscopy as well as ISO photometry. Our main conclusions are the following: (1) we argue that Parsamian 21 is probably an FU Orionis-type object; (2) Parsamian 21 is not associated with any rich cluster of young stars; (3) our measurements reveal a circumstellar envelope, a polar cavity and an edge-on disc; the disc seems to be geometrically flat and extends from approximately 48 to 360 AU from the star; (4) the SED can be reproduced with a simple model of a circumstellar disc and an envelope; (5) within the framework of an evolutionary sequence of FUors proposed by Green et al. (2006) and Quanz et al. (2007), Parsamian 21 can be classified as an intermediate-aged object.Comment: Accepted for publication in the MNRAS. 16 pages, 18 figures and 5 table

    A Multiwavelength Study of Evolved Massive Stars in the Galactic Center

    Full text link
    The central region of the Milky Way provides a unique laboratory for a systematic, spatially-resolved population study of evolved massive stars of various types in a relatively high metallicity environment. We have conducted a multi-wavelength data analysis of 180 such stars or candidates, most of which were drawn from a recent large-scale HST/NICMOS narrow-band Pa-a survey, plus additional 14 Wolf-Rayet stars identified in earlier ground-based spectroscopic observations of the same field. The multi-wavelength data include broad-band IR photometry measurements from HST/NICMOS, SIRIUS, 2MASS, Spitzer/IRAC, and Chandra X-ray observations. We correct for extinctions toward individual stars, improve the Pa-a line equivalent width measurements, quantify the substantial mid-IR dust emission associated with WC stars, and find X-ray counterparts. In the process, we identify 10 foreground sources, some of which may be nearby cataclysmic variables. The WN stars in the Arches and Central clusters show correlations between the Pa-a equivalent width and the adjacent continuum emission. However, the WN stars in the latter cluster are systematically dimmer than those in the Arches cluster, presumably due to the different ages of the two clusters. In the EW-magnitude plot, WNL stars, WC stars and OB supergiants roughly fall into three distinct regions. We estimate that the dust mass associated with individual WC stars in the Quintuplet cluster can reach 1e-5 M, or more than one order of magnitude larger than previous estimates. Thus WC stars could be a significant source of dust in the galaxies of the early universe. Nearly half of the evolved massive stars in the GC are located outside the three known massive stellar clusters. The ionization of several compact HII regions can be accounted for by their enclosed individual evolved massive stars, which thus likely formed in isolation or in small groups.Comment: Accepted for publication in MNRA

    HerMES: point source catalogues from Herschel-SPIRE observations II

    Get PDF
    Key Programme on the Herschel Space Observatory. With a wedding cake survey strategy, it consists of nested fields with varying depth and area totalling ∼380 deg2. In this paper, we present deep point source catalogues extracted from Herschel-Spectral and Photometric Imaging Receiver (SPIRE) observations of all HerMES fields, except for the later addition of the 270 deg2 HerMES Large-Mode Survey (HeLMS) field. These catalogues constitute the second Data Release (DR2) made in 2013 October. A sub-set of these catalogues, which consists of bright sources extracted from Herschel-SPIRE observations completed by 2010 May 1 (covering ∼74 deg2) were released earlier in the first extensive data release in 2012 March. Two different methods are used to generate the point source catalogues, the SUSSEXTRACTOR point source extractor used in two earlier data releases (EDR and EDR2) and a new source detection and photometry method. The latter combines an iterative source detection algorithm, STARFINDER, and a De-blended SPIRE Photometry algorithm. We use end-to-end Herschel-SPIRE simulations with realistic number counts and clustering properties to characterize basic properties of the point source catalogues, such as the completeness, reliability, photometric and positional accuracy. Over 500 000 catalogue entries in HerMES fields (except HeLMS) are released to the public through the HeDAM (Herschel Database in Marseille) website (http://hedam.lam.fr/HerMES)

    The nuclear star cluster of the Milky Way: proper motions and mass

    Get PDF
    Nuclear star clusters (NSCs) are located at the photometric and dynamical centers of the majority of galaxies. They are among the densest star clusters in the Universe. The NSC in the Milky Way is the only object of this class that can be resolved into individual stars. We measured the proper motions of more than 6000 stars within ~1.0 pc of the supermassive black hole Sgr A*. The full data set is provided in this work. We largely exclude the known early-type stars with their peculiar dynamical properties from the dynamical analysis. The cluster is found to rotate parallel to Galactic rotation, while the velocity dispersion appears isotropic (or anisotropy may be masked by the cluster rotation). The Keplerian fall-off of the velocity dispersion due to the point mass of Sgr A* is clearly detectable only at R <~ 0.3 pc. Nonparametric isotropic and anisotropic Jeans models are applied to the data. They imply a best-fit black hole mass of 3.6 (+0.2/-0.4) x 10^6 solar masses. Although this value is slightly lower than the current canonical value of 4.0x10^6 solar masses, this is the first time that a proper motion analysis provides a mass for Sagittarius A* that is consistent with the mass inferred from orbits of individual stars. The point mass of Sagittarius A* is not sufficient to explain the velocity data. In addition to the black hole, the models require the presence of an extended mass of 0.5-1.5x10^6 solar masses in the central parsec. This is the first time that the extended mass of the nuclear star cluster is unambiguously detected. The influence of the extended mass on the gravitational potential becomes notable at distances >~0.4 pc from Sgr A*. Constraints on the distribution of this extended mass are weak. The extended mass can be explained well by the mass of the stars that make up the cluster.Comment: accepted for publication in Astronomy & Astrophysics; please contact first author for higher quality figure

    The structure of the nuclear stellar cluster of the Milky Way

    Get PDF
    We present high-resolution seeing limited and AO NIR imaging observations of the stellar cluster within about one parsec of Sgr A*, the massive black hole at the centre of the Milky Way. Stellar number counts and the diffuse background light density were extracted from these observations in order to examine the structure of the nuclear stellar cluster.Our findings are as follows: (a) A broken-power law provides an excellent fit to the overall structure of the GC nuclear cluster. The power-law slope of the cusp is Γ=0.19±0.05\Gamma=0.19\pm0.05, the break radius is Rbreak=6.0±1.0R_{\rm break} = 6.0'' \pm 1.0'' or 0.22±0.040.22\pm0.04 pc, and the cluster density decreases with a power-law index of Γ=0.75±0.1\Gamma=0.75\pm0.1 outside of RbreakR_{\rm break}. (b) Using the best velocity dispersion measurements from the literature, we derive higher mass estimates for the central parsec than assumed until now. The inferred density of the cluster at the break radius is 2.8±1.3×106Mpc32.8\pm1.3\times 10^{6} {\rm M_{\odot} pc^{-3}}. This high density agrees well with the small extent and flat slope of the cusp. Possibly, the mass of the stars makes up only about 50% of the total cluster mass. (c) Possible indications of mass segregation in the cusp are found (d) The cluster appears not entirely homogeneous. Several density clumps are detected that are concentrated at projected distances of R=3R=3'' and R=7R=7'' from Sgr A*.(e) There appears to exist an under-density of horizontal branch/red clump stars near R=5R=5'', or an over-density of stars of similar brightness at R=3R=3'' and R=7R=7''. (f) The extinction map in combination with cometary-like features in an L'-band image may provide support for the assumption of an outflow from Sgr A*.Comment: accepted for publication by A&A; please contact first author for higher quality figure
    corecore