We have recently carried out the first wide-field hydrogen Paschen-alpha line
imaging survey of the Galactic Center (GC), using the NICMOS instrument aboard
the Hubble Space Telescope. The survey maps out a region of 2253 pc^2 around
the central supermassive black hole (Sgr A*) in the 1.87 and 1.90 Micron narrow
bands with a spatial resolution of 0.01 pc at a distance of 8 kpc. Here we
present an overview of the observations, data reduction, preliminary results,
and potential scientific implications, as well as a description of the
rationale and design of the survey. We have produced mosaic maps of the
Paschen-alpha line and continuum emission, giving an unprecedentedly high
resolution and high sensitivity panoramic view of stars and photo-ionized gas
in the nuclear environment of the Galaxy. We detect a significant number of
previously undetected stars with Paschen-alpha in emission. They are most
likely massive stars with strong winds, as confirmed by our initial follow-up
spectroscopic observations. About half of the newly detected massive stars are
found outside the known clusters (Arches, Quintuplet, and Central). Many
previously known diffuse thermal features are now resolved into arrays of
intriguingly fine linear filaments indicating a profound role of magnetic
fields in sculpting the gas. The bright spiral-like Paschen-alpha emission
around Sgr A* is seen to be well confined within the known dusty torus. In the
directions roughly perpendicular to it, we further detect faint, diffuse
Paschen-alpha emission features, which, like earlier radio images, suggest an
outflow from the structure. In addition, we detect various compact
Paschen-alpha nebulae, probably tracing the accretion and/or ejection of stars
at various evolutionary stages.Comment: accepted for publication in MNRAS; a version of higher resolution
images may be found at http://www.astro.umass.edu/~wqd/papers/hst/paper1.pd