4,392 research outputs found

    Experimental pig-to-pig transmission dynamics for African swine fever virus, Georgia 2007/1 strain

    Get PDF
    African swine fever virus (ASFV) continues to cause outbreaks in domestic pigs and wild boar in Eastern European countries. To gain insights into its transmission dynamics, we estimated the pig-to-pig basic reproduction number (R 0) for the Georgia 2007/1 ASFV strain using a stochastic susceptible-exposed-infectious-recovered (SEIR) model with parameters estimated from transmission experiments. Models showed that R 0 is 2·8 [95% confidence interval (CI) 1·3–4·8] within a pen and 1·4 (95% CI 0·6–2·4) between pens. The results furthermore suggest that ASFV genome detection in oronasal samples is an effective diagnostic tool for early detection of infection. This study provides quantitative information on transmission parameters for ASFV in domestic pigs, which are required to more effectively assess the potential impact of strategies for the control of between-farm epidemic spread in European countries.ISSN:0950-2688ISSN:1469-440

    Semigroup analysis of structured parasite populations

    Get PDF
    Motivated by structured parasite populations in aquaculture we consider a class of size-structured population models, where individuals may be recruited into the population with distributed states at birth. The mathematical model which describes the evolution of such a population is a first-order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral theory of semigroups to establish conditions for the existence of a positive equilibrium solution of our model. Then, we formulate conditions that guarantee that the linearised system is governed by a positive quasicontraction semigroup on the biologically relevant state space. We also show that the governing linear semigroup is eventually compact, hence growth properties of the semigroup are determined by the spectrum of its generator. In the case of a separable fertility function, we deduce a characteristic equation, and investigate the stability of equilibrium solutions in the general case using positive perturbation arguments.Comment: to appear in Mathematical Modelling of Natural Phenomen

    Extinction in Lotka-Volterra model

    Full text link
    Competitive birth-death processes often exhibit an oscillatory behavior. We investigate a particular case where the oscillation cycles are marginally stable on the mean-field level. An iconic example of such a system is the Lotka-Volterra model of predator-prey competition. Fluctuation effects due to discreteness of the populations destroy the mean-field stability and eventually drive the system toward extinction of one or both species. We show that the corresponding extinction time scales as a certain power-law of the population sizes. This behavior should be contrasted with the extinction of models stable in the mean-field approximation. In the latter case the extinction time scales exponentially with size.Comment: 11 pages, 17 figure

    Variability of Contact Process in Complex Networks

    Full text link
    We study numerically how the structures of distinct networks influence the epidemic dynamics in contact process. We first find that the variability difference between homogeneous and heterogeneous networks is very narrow, although the heterogeneous structures can induce the lighter prevalence. Contrary to non-community networks, strong community structures can cause the secondary outbreak of prevalence and two peaks of variability appeared. Especially in the local community, the extraordinarily large variability in early stage of the outbreak makes the prediction of epidemic spreading hard. Importantly, the bridgeness plays a significant role in the predictability, meaning the further distance of the initial seed to the bridgeness, the less accurate the predictability is. Also, we investigate the effect of different disease reaction mechanisms on variability, and find that the different reaction mechanisms will result in the distinct variabilities at the end of epidemic spreading.Comment: 6 pages, 4 figure

    The lifespan method as a tool to study criticality in absorbing-state phase transitions

    Get PDF
    In a recent work, a new numerical method (the lifespan method) has been introduced to study the critical properties of epidemic processes on complex networks [Phys. Rev. Lett. \textbf{111}, 068701 (2013)]. Here, we present a detailed analysis of the viability of this method for the study of the critical properties of generic absorbing-state phase transitions in lattices. Focusing on the well understood case of the contact process, we develop a finite-size scaling theory to measure the critical point and its associated critical exponents. We show the validity of the method by studying numerically the contact process on a one-dimensional lattice and comparing the findings of the lifespan method with the standard quasi-stationary method. We find that the lifespan method gives results that are perfectly compatible with those of quasi-stationary simulations and with analytical results. Our observations confirm that the lifespan method is a fully legitimate tool for the study of the critical properties of absorbing phase transitions in regular lattices

    Immobilization of single strand DNA on solid substrate

    Full text link
    Thin films based on Layer-by-Layer (LbL) self assembled technique are useful for immobilization of DNA onto solid support. This communication reports the immobilization of DNA onto a solid support by electrostatic interaction with a polycation Poly (allylamine hydrochloride) (PAH). UV-Vis absorption and steady state fluorescence spectroscopic studies exhibit the characteristics of DNA organized in LbL films. The most significant observation is that single strand DNA are immobilized on the PAH backbone of LbL films when the films are fabricated above the melting temperature of DNA. DNA immobilized in this way on LbL films remains as such when the temperature is restored at room temperature and the organization remains unaffected even after several days. UV-Vis absorption spectroscopic studies confirm this finding.Comment: Eight pages, five figure

    Epidemics in Networks of Spatially Correlated Three-dimensional Root Branching Structures

    Full text link
    Using digitized images of the three-dimensional, branching structures for root systems of bean seedlings, together with analytical and numerical methods that map a common 'SIR' epidemiological model onto the bond percolation problem, we show how the spatially-correlated branching structures of plant roots affect transmission efficiencies, and hence the invasion criterion, for a soil-borne pathogen as it spreads through ensembles of morphologically complex hosts. We conclude that the inherent heterogeneities in transmissibilities arising from correlations in the degrees of overlap between neighbouring plants, render a population of root systems less susceptible to epidemic invasion than a corresponding homogeneous system. Several components of morphological complexity are analysed that contribute to disorder and heterogeneities in transmissibility of infection. Anisotropy in root shape is shown to increase resilience to epidemic invasion, while increasing the degree of branching enhances the spread of epidemics in the population of roots. Some extension of the methods for other epidemiological systems are discussed.Comment: 21 pages, 8 figure

    Особенности попередельного способа калькуляции себестоимости продукции в перерабатывающем производстве

    Get PDF
    We are interested in the asymptotic stability of equilibria of structured populations modelled in terms of systems of Volterra functional equations coupled with delay differential equations. The standard approach based on studying the characteristic equation of the linearized system is often involved or even unattainable. Therefore, we propose and investigate a numerical method to compute the eigenvalues of the associated infinitesimal generator. The latter is discretized by using a pseudospectral approach, and the eigenvalues of the resulting matrix are the sought approximations. An algorithm is presented to explicitly construct the matrix from the model coefficients and parameters. The method is tested first on academic examples, showing its suitability also for a class of mathematical models much larger than that mentioned above, including neutral- and mixed-type equations. Applications to cannibalism and consumer\u2013resource models are then provided in order to illustrate the efficacy of the proposed technique, especially for studying bifurcations

    Population Dynamics in Spatially Heterogeneous Systems with Drift: the generalized contact process

    Full text link
    We investigate the time evolution and stationary states of a stochastic, spatially discrete, population model (contact process) with spatial heterogeneity and imposed drift (wind) in one- and two-dimensions. We consider in particular a situation in which space is divided into two regions: an oasis and a desert (low and high death rates). Carrying out computer simulations we find that the population in the (quasi) stationary state will be zero, localized, or delocalized, depending on the values of the drift and other parameters. The phase diagram is similar to that obtained by Nelson and coworkers from a deterministic, spatially continuous model of a bacterial population undergoing convection in a heterogeneous medium.Comment: 8 papes, 12 figure
    corecore