research

Extinction in Lotka-Volterra model

Abstract

Competitive birth-death processes often exhibit an oscillatory behavior. We investigate a particular case where the oscillation cycles are marginally stable on the mean-field level. An iconic example of such a system is the Lotka-Volterra model of predator-prey competition. Fluctuation effects due to discreteness of the populations destroy the mean-field stability and eventually drive the system toward extinction of one or both species. We show that the corresponding extinction time scales as a certain power-law of the population sizes. This behavior should be contrasted with the extinction of models stable in the mean-field approximation. In the latter case the extinction time scales exponentially with size.Comment: 11 pages, 17 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/12/2021
    Last time updated on 03/01/2020